employee from 01.01.1999 until now
Yakutsk, Russian Federation
from 01.01.2021 until now
North-Eastern Federal University (docent)
from 01.01.2018 to 01.01.2021
Yakutsk, Yakutsk, Russian Federation
Yakutsk, Russian Federation
Yakutsk, Russian Federation
Yakutsk, Russian Federation
Yakutsk, Russian Federation
The article reports on the studies of various manifestations of space weather (SW) on Earth, conducted by SHICRA SB RAS at the network of geophysical stations located in Yakutia. It is noted that the Institute researchers study various phenomena occurring in the solar wind and Earth’s magnetosphere such as magnetic clouds, Forbush effects, magnetic storms, substorms and associated subauroral glow, as well as high-latitude impulses in the dayside magnetosphere and sudden phase anomalies in the lower ionosphere. In addition to the data from the network of stations in Yakutia, data from other domestic and foreign stations, as well as direct measurements of the parameters of the interplanetary medium and magnetosphere, carried out on various spacecraft, are used to study these phenomena. The paper also describes physical models of magnetic clouds in the solar wind, high-latitude disturbed ionosphere, and methods for short-term forecasting of SW based on cosmic ray (CR) measurements developed at SHICRA SB RAS.
geomagnetic Pc5 pulsations, equivalent current systems, azimuthal and meridional propagation, space weather monitoring, space weather forecast, lower ionosphere, solar flare, VLF signal, sudden phase anomaly
1. Berezhko E.G., Starodubtsev S.A. Nature of the dynamics of the cosmic-ray fluctuation spectrum. Bull. Academy of Sciences of USSR. Ser. Physics. 1988, vol. 52, pp. 2361–2363.
2. Clilverd M.A., Rodger C.J., Thomson N.R., Brundell J.B., Ulich T., Lichtenberger J., Cobbett N., et al. Remote sensing space weather events: Antarctic‐Arctic radiation‐belt (dynamic) deposition-VLF atmospheric research Konsortium network. Space Weather. 2009, vol. 7, iss. 4, S04001. DOI:https://doi.org/10.1029/2008SW000412.
3. Cole K.D. Stable auroral red arcs, sinks for energy of Dst main phase. J. Geophys. Res. 1965, vol.70, iss. 7, pp. 1689–1706.
4. Cole K.D. Magnetospheric processes leading to mid-latitude auroras. Ann. Geophys. 1970, vol. 26, iss. 1, pp. 187–193.
5. Cornwall J.M., Coroniti F.V., Thorne R.M. Unified theory of SAR arc formation at the plasmapause. J. Geophys. Res. 1971, vol. 76, iss. 19, pp. 4428–4445.
6. George H.E., Rodger C.J., Clilverd M.A., Cresswell‐Moorcock K., Brundell J.B., Thomson N.R. Developing a nowcasting capability for X‐Class solar flares using VLF radiowave propagation changes. Space Weather. 2019, vol. 17, iss. 12, pp. 1783–1799. DOI:https://doi.org/10.1029/2019SW002297.
7. Glassmeier K.-H. Traveling magnetospheric convection twin vortices: Observations and theory. Ann. Geophys. 1992, vol. 10, iss. 8, pp. 547–565.
8. Golikov I.A., Kolesnik A.G., Chernyshov V.I., Popov V.I. Mathematical model of the F2 region of the high-latitude ionosphere taking into account the thermal regime. Bull. Yakutsk State University, 2005, vol. 2, iss. 3. pp. 61–69.
9. Golikov I.A., Gololobov A.Yu., Popov V.I. Numerical modeling of the thermal regime of the high-latitude ionosphere. Bull. North-Eastern Federal University, 2012, vol. 9, iss. 3, pp. 22–28.
10. Golikov I.A., Gololobov A.Yu., Popov V.I. Modeling the electron temperature distribution in F2 region of high-latitude ionosphere for winter solstice conditions. Sol.-Terr. Phys. 2016, vol. 2, iss. 4, pp. 54–61. DOI:https://doi.org/10.12737/19424.
11. Gololobov A.Yu., Golikov I.A. Numerical modeling of the influence of IMF on the large-scale structure of the ionosphere taking into account the misalignment of the poles. Bull. North-Eastern Federal University. 2024, vol. 21, iss. 1, pp. 45–57. DOI:https://doi.org/10.25587/2222-5404-2024-21-1-45-57.
12. Gololobov A.Yu., Golikov I.A., Popov V.I. Modeling of the influennce of magnetospheric storm on the large-scale structure of the high-latitude ionosphere for winter solstice conditions. Sol.-Terr. Phys. 2025, vol. 11, iss. 2, pp. 88–98. DOI:https://doi.org/10.12737/stp-112202509.
13. Grigoryev A.V., Starodubtsev S.A., Grigoryev V.G., Usoskin I.G., Mursula K. Fluctuations of cosmic rays and IMF in the vicinity of interplanetary shocks. Adv. Space Res. 2008, vol. 41, iss. 6, pp. 955–961. DOI:https://doi.org/10.1016/j.asr.2007.04.044.
14. Hayakawa H., Ebihara Y., Mishev A., Koldobskiy S., Kusano K., Bechet S., Yashiro S., et al. The solar and geomagnetic storms in 2024 May: A flash data report. Astrophys. J. 2025, vol. 979, iss. 1, 26 p. DOI:https://doi.org/10.3847/1538-4357/ad9335.
15. Ievenko I.B. Effects of magnetospheric activity on the plasmasphere as inferred from observations of diffuse aurorae and SAR arcs. Geomagnetism and Aeronomy. 1999, vol. 39, iss. 6, pp. 697–703.
16. Ievenko, I.B. SAR-arc observation during the overlap registration of an energetic plasma with a plasmapause aboard the Van Allen Probe. J. Atmos. Solar-Terr. Phys. 2020, vol. 209, 105386. DOI:https://doi.org/10.1016/j.jastp.2020.105386.
17. Ievenko I.B., Alekseyev V.N. Effect of the substorm and storm on the SAR arc dynamics: A statistical analysis. Geomagnetism and Aeronomy. 2004, vol. 44, iss. 5, pp. 592−603.
18. Ievenko I.B., Parnikov S.G. Ground-based and satellite observations of the SAR arc in the MLT evening sector at the beginning of the magnetic storm on March 17, 2015. Geomagnetism and Aeronomy. 2020, vol. 60, iss. 6, pp. 737–746. DOI:https://doi.org/10.1134/S0016793220050096.
19. Kolesnik A.G., Golikov I.A. Three-dimensional model of the high-latitude F region taking into account the displacement between geographical and geomagnetic coordinates. Geomagnetism and Aeronomy. 1982, vol. 22, iss. 3, pp. 435–439.
20. Korsakov A.A., Kozlov V.I., Karimov R.R. Sudden phase anomalies of VLF radio transmitters signals (11.9 kHz) of RSDN-20 system registered in Yakutsk during 2009–2017. Proc. SPIE, 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics. Moscow, Russian Federation, 2021, 119167X. DOI:https://doi.org/10.1117/12.2603367.
21. Kozlov V.I., Starodubtsev S.A., Grigoryev V.G., Baishev D.G., Makarov G.A., Pavlov E.A., Karimov R.R., et al. Analysis of helio- and geophysical events in October–November 2021 from comprehensive observations of SHICRA SB RAS. Sol.-Terr. Phys. 2025, vol. 11, iss. 1, pp. 7–26. DOI:https://doi.org/10.12737/stp-111202502.
22. Kozyra J.U., Nagy A.F., Slater D.W. High-altitude energy source(s) for stable auroral red arcs. Rev. Geophys. 1997, vol. 35, iss. 2, pp. 155–190.
23. Kumar A., Kumar S. Solar flare effects on D-region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24. Earth, Planets and Space. 2018, vol. 70, iss. 29, pp. 1–14. DOI:https://doi.org/10.1186/s40623-018-0794-8.
24. Lazzús J.A., Salfate I. Report on the effects of the May 2024 Mother’s day geomagnetic storm observed from Chile. J. Atmos. Solar–Terr. Phys. 2024, vol. 261, 106304. DOI:https://doi.org/10.1016/j.jastp.2024.106304.
25. Mizun Yu.G. Polar Ionosphere. Leningrad: Nauka Publ., 1980, 216 p.
26. Moiseev A.V., Popov V.I., Starodubtsev S.A. Comparative analysis of the propagation of magnetic variations and equivalent current vortices of geomagnetic Pc5 pulsations along the meridian and azimuth. Geomagnetism and Aeronomy, 2024a, vol. 64, iss. 4, pp. 548–566. DOI:https://doi.org/10.31857/S0016794024040093.
27. Moiseev A.V., Popov V.I., Starodubtsev S.A. Investigating azimuthal propagation of Ps5 geomagnetic pulsations and their equivalent current vortices from ground-based and satellite data. Sol.-Terr. Phys. 2024b, vol. 10, iss. 3, pp. 97–107. DOI:https://doi.org/10.12737/stp-103202412.
28. Petukhova A.S., Petukhov I.S., Petukhov S.I. Theory of the formation of Forbush decrease in a magnetic cloud: Dependence of Forbush decrease characteristics on magnetic cloud parameters. Astrophys. J. 2019, vol. 880, iss. 1, art. no. 17. DOI:https://doi.org/10.3847/1538-4357/ab2889.
29. Petukhova A.S., Petukhov I.S., Petukhov S.I. Forbush decrease characteristics in a magnetic cloud. Space Weather. 2020, vol. 18, iss. 12, art. no. e02616. DOI:https://doi.org/10.1029/2020SW002616.
30. Piersanti M., Oliveira D.M., D’Angelo G., Diego P., Napoletanj G., Zesta E. On the geoelectric field response to the SSC of the May 2024 super storm over Europe. Space Weather. 2025, vol. 23, e2024SW004191. DOI:https://doi.org/10.1029/2024SW004191.
31. Pilipenko V.A., Chernikov A.A., Soloviev A.A., Yagova N., Sakharov Y., Kudin D.V., Kostarev D., et al. Influence of space weather on the reliability of the transport system functioning at high latitudes. Russian J. Earth Sciences. 2023, vol. 23, ES2008. DOI:https://doi.org/10.2205/2023ES000824.
32. Ram T., Veenadhari S., Dimri B., Bulusu J., Bagiya M., Gurubaran S., Parihar N., et al. Super‐intense geomagnetic storm on 10–11 May 2024: Possible mechanisms and impacts. Space Weather. 2024, vol. 22, e2024SW004126. DOI:https://doi.org/10.1029/2024SW004126.
33. Silber I., Price C. On the use of VLF narrowband measurements to study the lower ionosphere and the mesosphere–lower thermosphere. Surveys in Geophysics. 2017, vol. 38, iss. 2, pp. 407–441. DOI:https://doi.org/10.1007/s10712-016-9396-9.
34. Starodubtsev S.A., Transkii I.A., Verigin M.I., Kotova G.A. Intensity fluctuations of cosmic rays and of the interplanetary magnetic field in the region of interaction of solar-wind streams with different velocities. Geomagnetism and Aeronomy. 1996, vol. 36, pp. 241–245.
35. Starodubtsev S.A., Zverev A.S., Gololobov P.Yu., Grigoriyev V.G. Cosmic ray fluctuations and MHD waves in the solar wind. Sol.-Terr. Phys. 2023, vol. 9, iss. 2, pp. 73–80. DOI:https://doi.org/10.12737/stp-92202309.
36. Tavares M., Santiago M.A.M. What are traveling convection vortices? Brazilian J. Physics. 1999, vol. 29, iss. 3, pp. 524–528.
37. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral precipitation model and its application to ionospheric and magnetospheric studies. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 157–171. DOI:https://doi.org/10.1016/j.jastp.2013.05.007.
38. Weimer D.R. A flexible, IMG dependent model of high-latitude electric potentials having “space weather” applications. Geophys. Res. Lett. 1996, vol. 23, no. 18, pp. 2549–2552.
39. Wendt V., Schneider H., Banyś D., Hansen M., Clilverd M.A., Raita T. Why does the October effect not occur at night? Geophys. Res. Lett. 2024, vol. 51, iss. 7, pp. e2023GL107445. DOI:https://doi.org/10.1029/2023GL107445.
40. URL: http://eng.sepc.ac.cn/ (accessed February 10, 2025).
41. URL: http://www.intermagnet.org (accessed February 10, 2025).
42. URL: http://magdas2.serc.kyushu-u.ac.jp/station/index.html (accessed February 10, 2025).
43. URL: http://www.isee.nagoya-u.ac.jp/dimr/PWING/en/ (accessed February 10, 2025).
44. URL: http://stjarnhimlen.se/comp/tutorial.html (accessed February 10, 2025).
45. URL: ftp://ftp.swpc.noaa.gov/pub/lists/ace2/ (accessed February 10, 2025).
46. URL: ftp://ftp.swpc.noaa.gov/pub/lists/ace/ (accessed February 10, 2025).
47. URL: https://omniweb.gsfc.nasa.gov/ow.html (accessed February 10, 2025).
48. URL: https://www.ysn.ru/~starodub/CosmicRayFluctuations/index.html (accessed February 10, 2025).



