The article is devoted to the creation of an effective method of mathematical scanning of surfaces, ensuring high accuracy of calculations of their areas. This problem is becoming particularly relevant in the context of the constant growth of requirements for the level of graphic competence of engineers and designers, as well as the active introduction of information technology and automation of project activities. An original method based on dividing a surface into a system of parallel lines and then constructing its sweep on a plane is described. This approach guarantees obtaining a reliable two-dimensional model that adequately reflects the actual configuration of the surface. The procedures for constructing sweeps for both classical deployable surfaces (cone, pyramid) and non-deployable surfaces (sphere, open torus, abstract surface of rotation) are described in detail. The potential application possibilities of the proposed method in industry, architecture and cartography are noted, however, specific practical examples are not given in the article. The results of experimental tests confirming the high accuracy and reliability of the developed methodology are presented. The potential of using this technique in the educational process of technical universities is discussed, where it can significantly enrich the programs of geometric and graphic training of students. The advantages of introducing specialized courses dedicated to new tools of automatic design and spatial modeling are considered. The main conclusions of the article are to identify promising areas for the development of mathematical methods of surface scanning, which will effectively integrate modern information technologies into the processes of professional education and scientific and technological progress. The work is intended for specialists dealing with the theory and practice of design, mathematics and engineering.
higher education, geometrographic disciplines, descriptive geometry, engineering graphics, computer graphics, computational graphics, mathematical surface unfolding
1. Abrosimov S.N. Komp'yuternye tehnologii v obrazovatel'nom processe po inzhenernoy grafike [Tekst] / S.N. Abrosimov, K.O. Glazunov, D.E. Tihonov-Bugrov // Sovremennoe obrazovanie: soderzhanie, tehnologii, kachestvo. — 2020. — T. 1. — S. 79–81. EDN: https://elibrary.ru/YCQSTU
2. Verhoturova E.V. Reshenie uchebnyh i prikladnyh inzhenerno-stroitel'nyh zadach metodami komp'yuternoy grafiki [Tekst] / E.V. Verhoturova // Geometriya i grafika. — 2022. — T. 10. — № 4. — S. 46–58. — DOIhttps://doi.org/10.12737/2308-4898-2022-10-4-46-58 EDN: https://elibrary.ru/EBISWV
3. Vinickiy I.G. Nachertatel'naya geometriya: uchebnik dlya vuzov [Tekst] / I.G. Vinickiy. — M.: Vysshaya shkola, 1975. — 280 s.
4. Evseeva E.G. Novye podhody k geometro-graficheskoy podgotovke studentov tehnicheskogo universiteta [Tekst] / E.G. Evseeva // Geometriya i geometricheskoe obrazovanie: Sbornik trudov IV Mezhdunarodnoy nauchnoy konferencii (k 80-letiyu E.V. Potoskueva), Tol'yatti, 29–30 noyabrya 2019 goda / Pod obsch. red. R.A. Uteevoy. — Tol'yatti: Izd-vo Tol'yattinskogo gos. un-ta, 2020. — S. 189–194. EDN: https://elibrary.ru/ROQLSA
5. Ermolenko T.A. K voprosu vazhnosti graficheskoy gramotnosti v podgotovke specialistov [Tekst] / T.A. Ermolenko // Sovremennye tendencii izobrazitel'nogo, dekorativnogo prikladnogo iskusstv i dizayna. — 2024. — № 1. — S. 115–122. EDN: https://elibrary.ru/AWSWWE
6. Kozlova I.A. Graficheskie discipliny i informatizaciya inzhenernogo obrazovaniya [Tekst] / I.A. Kozlova, R.B. Slavin, B.M. Slavin // Geometriya i grafika. 2022. — T. 10. — № 4. — S. 35–45. — DOIhttps://doi.org/10.12737/23084898-2022-10-4-35-45 DOI: https://doi.org/10.12737/2308-4898-2022-10-4-35-45; EDN: https://elibrary.ru/FXHKNJ
7. Kokorin M.S. Proektnye zadachi v kurse nachertatel'noy geometrii [Tekst] / M.S. Kokorin, T.V. Markova, T.A. Nikitina // Geometriya i grafika. — 2024. — T. 12. № 3. — S. 32–45. — DOI:https://doi.org/10.12737/2308-4898-2024-123-32-45 DOI: https://doi.org/10.12737/2308-4898-2024-12-3-32-45; EDN: https://elibrary.ru/BYKDVY
8. Komp'yuternaya grafika kak odna iz sostavlyayuschih graficheskoy podgotovki buduschih inzhenerov [Tekst] / G.A. Dmitrenko, T.N. Emelina, T.E. Skorobogatova, A.E. Rusanova // Rossiyskaya nauka, innovacii, obrazovanie (ROSNIO-III-2024): Sbornik nauchnyh trudov III Vserossiyskoy (nacional'noy) nauchnoy konferencii s mezhdunarodnym uchastiem, Krasnoyarsk, 30–31 maya 2024 goda. — Krasnoyarsk: Krasnoyarskiy kraevoy Dom nauki i tehniki Rossiyskogo soyuza nauchnyh i inzhenernyh obschestvennyh ob'edineniy, 2024. S. 69–73. — DOI:https://doi.org/10.47813/rosnio-III.2024.2002 EDN: https://elibrary.ru/YTESNO
9. Nazarova Zh.A. Geometro-graficheskaya podgotovka studentov tehnicheskih special'nostey v sovremennyh usloviyah [Tekst] / Zh.A. Nazarova // Geometriya i grafika. — 2024. — T. 12. — № 1. — S. 41–49. — DOIhttps://doi.org/10.12737/2308-4898-2024-12-1-41-49 EDN: https://elibrary.ru/EULJRU
10. Nazarova Zh.A. Integrirovannoe izuchenie inzhenernoy i komp'yuternoy grafiki [Tekst] / Zh.A. Nazarova // Innovacionnye nauchnye issledovaniya 2022: psihologiya i pedagogika: Sbornik materialov IX mezhdunarodnoy ochno-zaochnoy nauchno-prakticheskoy konferencii, Moskva, 25 noyabrya 2022 goda. — M.: Imperiya, 2022. S. 127–130. EDN: https://elibrary.ru/GYMSXA
11. Nazarova Zh.A. Perspektivy razvitiya graficheskoy podgotovki studentov tehnicheskih vuzov [Tekst] / Zh.A. Nazarova // Omskiy nauchnyy vestnik. — 2023. № 2. — S. 67–72. — DOI:https://doi.org/10.25206/1813-8225-2023-18667-72 DOI: https://doi.org/10.25206/1813-8225-2023-186-67-72; EDN: https://elibrary.ru/CEZKNC
12. Nikitina T.A. Rol' kursa inzhenernoy geometrii v formirovanii tehnicheskoy gramotnosti studentov-dizaynerov [Tekst] / T.A. Nikitina, M.S. Kokorin // Sovremennoe obrazovanie: soderzhanie, tehnologii, kachestvo. — 2022. — T. 1. — S. 180–182. EDN: https://elibrary.ru/PQSSPT
13. Oyuunzhargal Ch. Tendencii obucheniya v inzhenernoy grafike [Tekst] / Ch. Oyuunzhargal, E. Oyuunzayaa // Geometriya i grafika. — 2022. — T. 10. — № 2. — S. 53–59. DOI:https://doi.org/10.12737/2308-4898-2022-10-2-53-59 EDN: https://elibrary.ru/MRFXQJ
14. Paliy N.V. Pokadrovaya animaciya v obuchenii nachertatel'noy geometrii [Tekst] / N.V. Paliy // Geometriya i grafika. — 2023. — T. 11. — № 3. — S. 39–47. — DOIhttps://doi.org/10.12737/2308-4898-2023-11-3-39-47 EDN: https://elibrary.ru/YVXDAJ
15. Paliy N.V. Sistemnyy podhod k obucheniyu studentov vozmozhnostyam sovremennyh sistem avtomatizirovannogo proektirovaniya [Tekst] / N.V. Paliy // Geometriya i grafika. — 2023. — T. 11. — № 4. — S. 52–60. — DOIhttps://doi.org/10.12737/2308-4898-2024-11-4-52-60 EDN: https://elibrary.ru/CCSXLF
16. Petrenko P.V. Informatizaciya i komp'yuterizaciya v obrazovanii na primere obucheniya inzhenernoy grafike [Tekst] / P.V. Petrenko // Moya professional'naya kar'era. — 2023. — T. 1. — № 45. — S. 93–105. EDN: https://elibrary.ru/OSTFIJ
17. Ryskina E.S. Inzhenernaya grafika i SAPR v mashinostroenii [Tekst] / E.S. Ryskina, E.V. Skripnichuk // Tehnologii metallurgii, mashinostroeniya i materialoobrabotki. — 2022. — № 21. — S. 263–272. EDN: https://elibrary.ru/EAXRDO
18. Savel'ev Yu.A. Vychislitel'naya grafika v reshenii netradicionnyh inzhenernyh zadach [Tekst] / Yu.A. Savel'ev, E.Yu. Cherkasova // Geometriya i grafika. — 2020. T. 8. — № 1. — S. 33–44. — DOI:https://doi.org/10.12737/2308-48982020-33-44 DOI: https://doi.org/10.12737/2308-4898-2020-33-44; EDN: https://elibrary.ru/YBMQZU
19. Savel'ev Yu.A. Komp'yuternaya metodika izucheniya nachertatel'noy geometrii. Tehnicheskoe zadanie [Tekst] / Yu.A. Savel'ev, E.V. Babich // Geometriya i grafika. 2018. — T. 6. — № 1. — S. 67–74. — DOI: 10.12737/ article_5ad09d62e8a792. 47611365 DOI: https://doi.org/10.12737/article_5ad09d62e8a792.47611365; EDN: https://elibrary.ru/YWMSER
20. Savel'ev Yu.A. Ciklicheskie poverhnosti. Poverhnosti s podobnymi secheniyami: uchebno-metod. posobie [Tekst] / Yu.A. Savel'ev. — Ekaterinburg: Izd-vo UrGUPS, 2008. — 54 s.
21. Sal'kov N.A. Izuchenie geometrii kak vazhneyshiy sposob razvitiya evristicheskogo myshleniya [Tekst] / N.A. Sal'kov // Geometriya i grafika. — 2024. — T. 12. № 1. — S. 22–31. — DOI:https://doi.org/10.12737/2308-4898-2024-121-22-31 DOI: https://doi.org/10.12737/2308-4898-2024-12-1-22-31; EDN: https://elibrary.ru/RDLBIM
22. Sal'kov N.A. O roli pervoy lekcii po nachertatel'noy geometrii [Tekst] / N.A. Sal'kov, N.S. Kadykova // Geometriya i grafika. — 2024. — T. 12. — № 3. — S. 13–20. DOI:https://doi.org/10.12737/2308-4898-2024-12-3-13-20 EDN: https://elibrary.ru/PRFOOD
23. Sergeeva I.A. Sovremennye sredstva naglyadnosti pri obuchenii nachertatel'noy geometrii [Tekst] / I.A. Sergeeva, O.B. Bolbat // Obrazovanie i problemy razvitiya obschestva. — 2024. — № 2. — S. 16–22. EDN: https://elibrary.ru/QXTYFX
24. Sokolova L.S. Teorema K. Pol'ke v model'nom prostranstve komp'yutera pri 2D-modelirovanii [Tekst] / L.S. Sokolova // Geometriya i grafika. — 2024. — T. 12. № 1. — S. 12–21. — DOI:https://doi.org/10.12737/2308-4898-2024-121-12-21 DOI: https://doi.org/10.12737/2308-4898-2024-12-1-12-21; EDN: https://elibrary.ru/ULPVVE
25. Fomin D.V. Matematicheskaya model' dlya resheniya inzhenernyh zadach [Tekst] / D.V. Fomin // Geometriya i grafika. — 2024. — T. 12. — № 2. — S. 26–39. — DOIhttps://doi.org/10.12737/2308-4898-2024-12-3-26-39 EDN: https://elibrary.ru/SNEGRA
26. Cherkasova E.Yu. Metodicheskie osnovy komp'yuternoy nachertatel'noy geometrii [Tekst] / E.Yu. Cherkasova // Mezhdunarodnyy zhurnal prikladnyh i fundamental'nyh issledovaniy. — 2021. — № 6. — S. 68–73. — DOIhttps://doi.org/10.17513/mjpfi.13233 EDN: https://elibrary.ru/VJKSLF
27. Cherkasova E.Yu. Primenenie metodov nachertatel'noy geometrii dlya resheniya fizicheskih zadach [Tekst] /E.Yu. Cherkasova // Mezhdunarodnyy zhurnal prikladnyh i fundamental'nyh issledovaniy. — 2022. № 12. — S. 88–91. — DOI:https://doi.org/10.17513/mjpfi.13489 EDN: https://elibrary.ru/LQTRGU
28. Shvecova V.V. Osobennosti primeneniya komp'yuternoy grafiki v otnoshenii razvitiya i sovershenstvovaniya bazovyh priemov nachertatel'noy geometrii i inzhenernoy grafiki [Tekst] / V.V. Shvecova // Nauka i biznes: puti razvitiya. — 2024. — № 9. — S. 31–34. EDN: https://elibrary.ru/FUDADT
29. Shorkina I.N. Evolyuciya metodov opisaniya poverhnosti [Tekst] / I.N. Shorkina // Naukosfera. — 2022. № 8-1. — S. 247–253. EDN: https://elibrary.ru/KPUHJY
30. Scherbakova O.V. Opyt integracii graficheskih disciplin pri obuchenii studentov transportnyh vuzov [Tekst] / O.V. Scherbakova, I.A. Sergeeva // Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2024. — № 2. — S. 170–173. EDN: https://elibrary.ru/WTYITZ



