Иркутск, Россия
Санспот, США
Тусон, США
Тусон, США
Анализ синоптических данных, полученных с помощью векторного спектромагнитографа (VSM) оптических долговременных исследований Солнца (SOLIS) и НАСА/НСО спектромагнитографа на вакуумном телескопе обсерватории Китт-Пик, показывает, что инверсия магнитных полей на Солнце обнаруживают элементы стохастического процесса, который может включать развитие особых структур всплывающего магнитного потока и асимметрию активности северного и южного полушарий. Присутствие таких неоднородностей делает моделирование и прогнозирование переполюсовок полярного поля крайне затруднительными, если вообще возможными. В классической модели цикла солнечной активности униполярные магнитные области (УМО) с полями преимущественно хвостовой полярности двигаются по направлению к полюсу благодаря меридиональным потокам и диффузии. УМО постепенно приводят к исчезновению полярного магнитного поля предыдущего цикла и к формированию полярного поля противоположной полярности. Однако мы показываем, что эту детерминистскую картину может легко изменить развитие мощного центра активности, или всплывание сверхбольшой активной области, или образование «стратегически расположенной» корональной дыры. Мы показываем, что активность, имеющая место в 24 цикле, возможно, является результатом этой хаотичности в эволюции поверхностного магнитного поля Солнца.
Солнечный цикл, солнечная активность, магнитные поля, корональные дыры
1. INTRODUCTION
The Babcock-Leighton mechanism [Babcock, 1961; Leighton, 1969] outlines a basic picture of cyclic changes of the Sun's magnetic fields. First, the solar cycle starts from a poloidal field defined by the magnetic field confined in the polar areas of the Sun. Then, differential rotation converts this poloidal field into a toroidal configuration, giving rise to the emergence of active regions in the photosphere. As the solar cycle progresses, the magnetic field of active regions is dis-persed by turbulent convection and meridional flow. These transport mechanisms lead to the accumulation of magnetic flux of trailing polarity of decaying active regions at high solar latitudes, eventually reversing the polarity of the polar fields and building the next solar cycle. This concept led to the development of a distinct family of flux-transport numerical models that employ the Sun's differential rotation, supergranular diffusion and the meridional flows, to successfully represent many properties of observed long-term evolution of large-scale magnetic fields [DeVore et al., 1985; Wang et al., 1989].
The flux transport models were also extensively used to study effects of various parameters on the evolution of polar magnetic field and the solar cycle [Jiang et al., 2013]. For example, Baumann et al. [2004] have shown that the active region tilt described by Joy's law [Pevtsov et al., 2014], the diffusion and the rate of flux emergence have significant effect on the polar magnetic field. The speed of the meridional flow was found to affect the strength of solar cycle with slower meridional flow resulting in weaker solar cycles [Zhao et al., 2014]. Despite recent improvements, several questions remain open about flux transport models including the role of the not-well known variations in the speed of the meridional flow and scatter in orienta-tion of active regions (Joy's law).
Both observations and numerical simulations indicate the importance of polar field as a predictor for strength of future solar cycle [e.g., Upton and Hatha-way, 2014]. On the other hand, the observational evi-dence of the importance of active region tilts on the strength of the solar cycle is inconclusive. The initial report by Dasi-Espuig et al. [2010] about finding a rela-tion between the mean active regions tilt of a given cy-cle and the strength of next cycle was questioned by Ivanov [2012]; McClintock, Norton [2013], and later, the results were revised by Dasi-Espuig et al. [2013]. Pevtsov et al. [2014] also argued that a relationship between the current surface activity (including active region tilt, flux emergence etc.) and the strength of the polar field may be complicated by a prior state of the polar field. For example, a strong surface activity may not necessary lead to a stronger polar field if it has a significant polar field of opposite polarity to cancel out.
On the other hand, even a relatively modest surface activity may result in a strong polar field if the polar field of the previous cycle is weak. The question of the polar field strengths dependence on history is a long-standing issue in flux-transport research. For example, in their long-term flux-transport simulations Schrijver et al. [2002] found that the polar fields did not reverse during every cycle, e.g., a weak cycle would often fail to reverse strong polar fields. They suggested that this problem could be overcomed if the polar fields decayed away on timescales of 5-10 years. This idea of radial diffusion is not widely accepted now. Wang et al. [2002] showed that polar field reversals could be main-tained if the surface flow speeds were systematically higher in large-amplitude cycles than in weak ones. Whatever this or other mechanisms can explain the complicated relationships between succeeding activity cycles of different amplitudes and polar field strengths is still the subject of debate.
The evolution of the polar magnetic field (and its re-versal) in the current solar cycle 24 has been recently studied by several researchers [Mordvinov, Yazev, 2014; Sun et al., 2015; Petrie, Ettinger, 2015; Tlatov et al., 2015]. Still, a complete understanding of the pro-cesses affecting the recent polar field reversal is missing. This justifies additional studies of the peculiarities of current solar cycle and its polar field reversals. In our study, we use a combination of synoptic observations and numerical modeling as described in detail in Sec-tions 2-5. Our findings are discussed in Section 6.
1. Babcock H.W. The topology of the Sun’s magnetic field and the 22-year cycle. The Astrophys. J. 1961, vol. 133, pp. 572-589. DOIhttps://doi.org/10.1086/147060.
2. Balasubramaniam K.S., Pevtsov A.A. Ground-based synoptic instrumentation for solar observations. Proc. SPIE 8148. Solar Physics and Space Weather Instrumentation IV, 814809. 2011. DOIhttps://doi.org/10.1117/12.892824.
3. Baumann I.D. Schmitt D. Schüssler M. Solanki S.K. Evolution of the large-scale magnetic field on the solar surface: A parameter study. Astron. Astrophys. 2004, vol. 426, pp. 1075-1091. DOIhttps://doi.org/10.1051/0004-6361:20048024.
4. Bertello L., Pevtsov A.A., Harvey J.W., Toussiant R.M. Improvements in the determination of ISS CaII K parameters. Solar Phys. 2011, vol. 272. P. 229-242. DOI: 10.1007/ s11207-011-9820-8.
5. Bertello L., Pevtsov A. A., Pietarila A. Signature of differential rotation in Sun-as-a-star Ca II K measurements. The Astrophys. J. 2012, vol. 761. 11. DOI:https://doi.org/10.1088/0004-637X/ 761/1/11.
6. Cameron R. H., Dasi-Espuig M., Jiang J., Isik E., Schmitt D., Schüssler M. Limits to solar cycle predictability: Cross-equatorial flux plumes. Astron. Astrophys. 2013. vol. 557. A141. DOIhttps://doi.org/10.1051/0004-6361/201321981.
7. Dasi-Espuig M., Solanki S.K., Krivova N.A., Cameron R., Peñuela T. Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 2010, vol. 518, no. A7. DOI:https://doi.org/10.1051/0004-6361/201014301.
8. Dasi-Espuig M., Solank, S.K., Krivova N.A., Cameron R., Peñuela T. Sunspot group tilt angles and the strength of the solar cycle (Corrigendum). Astron. Astrophys. 2013, vol. 56, no. C3. DOI:https://doi.org/10.1051/0004-6361/201014301e.
9. DeVore C.R., Sheeley N.R., Boris J.P., Young T.R., Harvey K.L. Simulations of magnetic-flux transport in solar active regions. Solar Phys. 1985, vol. 102, pp. 41-49. DOI: 10.1007/ BF00154036.
10. Györi L., Baranyi T., Ludmany A. Photospheric data programs at the Debrecen Observatory. Proc. of the Intern. Astron. Union, 6, Symp. S273. 2011. August 2010, pp. 403-407. DOI:https://doi.org/10.1017/S174392131101564X.
11. Ivanov V.G. Joy’s law and its features according to the data of three sunspot catalogs. Geomagnetism and Aeronomy. 2012, vol. 52, no. 8, pp. 999-1004. DOI: 10.1134/ S0016793212080130.
12. Jiang J., Cameron R.H., Schmitt D., Isik E. Modeling solar cycles 15 to 21 using a flux transport dynamo. Astron. Astrophys. 2013, vol. 553, no. A128. DOI:https://doi.org/10.1051/0004-6361/ 201321145.
13. Jones H.P., Duvall T.L., Jr., Harvey J.W., Mahaffey C.T., Schwitters J.D., Simmons J.E. The NASA/NSO spectromagnetograph. Solar Phys. 1992, vol. 139, pp. 211. DOI: 10.1007/ BF00159149.
14. Keller C.U., Harvey J.W., Giampapa M.S. SOLIS: An innovative suite of synoptic instruments. Innova-tive Telescopes and Instrumentation for Solar Astrophysics. Proc. SPIE. 2003, vol. 4853, pp. 194-204. Eds. Stephen L. Keil, Avakyan S.V.
15. Leighton R.B. A Magneto-kinematic model of the solar cycle. Astrophys. J. 1969, vol. 156, pp. 1-26. DOI: 10.1086/ 149943.
16. McClintock B.H., Norton A.A. Recovering Joy’s Law as a function of solar cycle, hemisphere, and longitude. Solar Phys. 2013, vol. 287, pp. 215-227. DOI: 10.1007/ s11207-013-0338-0.
17. Mordvinov A.V., Grigoryev V.M. Erofeev D.V. Evolution of sunspot activity and inversion of the Sun’s polar magnetic field in the current cycle. Adv. Space Research. 2015, vol. 55, pp. 2739-2743.
18. Mordvinov A.V., Yazev S.A. Reversals of the Sun’s polar magnetic fields in relation to activity complexes and coronal holes. Solar Phys. 2014, vol. 289, pp. 1971-1981. DOI: 10.1007/ s11207-013-0456-8.
19. Muñoz-Jaramillo A., et al. The minimum of solar cycle 23: As deep as it could be? The Astrophys. J. 2015, vol. 804, iss. 1, article id. 68, 12 p. DOI:https://doi.org/10.1088/0004-637X/804/1/68.
20. Karachik N.V., Pevtsov A.A., Abramenko V. For-mation of coronal holes on the ashes of active regions. The Astrophys. J. 2010, vol. 714, pp. 1672-1678. DOI:https://doi.org/10.1088/0004-637X/ 714/2/1672.
21. Petrovay K. Solar Cycle Prediction. Living Rev. in Solar Phys. 2010, vol. 7, pp. 6. DOI:https://doi.org/10.12942/lrsp-2010-6.
22. Petrie G.J.D. Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles. Solar Phys. 2012, vol. 281, pp. 577-598. DOI:https://doi.org/10.1007/s11207-012-0117-3.
23. Petrie G.J.D. Solar Magnetism in the Polar Regions // Living Reviews in Solar Physics. 2015, vol. 12, pp.5-102. DOI:https://doi.org/10.1007/rsp-2015-5.
24. Petrie G., Ettinger S. Polar field reversals and active region decay. Space Sci. Rev. 2015, vol. 70. DOI: 10.1007/ s11214-015-0189-0.
25. Pevtsov A.A. Transequatorial loops in the solar corona. The Astrophys. J. 2000, vol. 531, pp. 553-560. DOI: 10.1086/ 308467.
26. Pevtsov A.A., Abramenko V. I. Transport of open magnetic flux between solar polar regions. Solar and Stellar Variability: Impact on Earth and Planets. Proc. IAU. 2010, vol. 5, iss. S264. Eds. Kosovichev A., Andrei A., Rozelot J.-P. (Cambridge Univ. Press), pp. 210-212. DOI:https://doi.org/10.1017/S174392 130999264X.
27. Pevtsov A.A., Berger M.A., Nindos A., Norton A.A., van Driel-Gesztelyi L. Magnetic helicity, tilt, and twist. Space Sci. Rev. 2014, vol. 186, pp. 285-324. DOI:https://doi.org/10.1007/s11214-014-0082-2.
28. Schrijver C.J., De Rosa M.L., Title A.M. What is missing from our under-standing of long-term solar and heliospheric activity? The Astrophys. J. 2002, vol. 577, pp. 1006-1012. DOI:https://doi.org/10.1086/342247.
29. Sun X., Hoeksema J. T., Liu Y., Zhao J. On polar magnetic field reversal and surface flux transport during solar cycle 24. The Astrophys. J. 2015, vol. 798, p. 114. DOI:https://doi.org/10.1088/0004-637X/798/2/114.
30. Tlatov A.G., Dormidontov D.V., Kirpichev R.V., Pashchenko M.P., Shramko A.D., Peshcherov V.S., Grigoryev V.M., Demidov M.L., Svidskii P.M. Study of some characteristics of large-scale solar magnetic fields during the global field polarity reversal according to observations at the Telescope-Magnetograph of Kislovodsk Observatory. Geomagnetism and Aeronomy. 2015, vol. 55, no. 7, pp. 969-975.
31. Wang Y.-M., Lean J., Sheeley N.R., Jr. Role of a variable meridional flow in the secular evolution of the Sun’s polar fields and open flux. The Astrophys. J. 2002, vol. 577, pp. L53-L57. DOI:https://doi.org/10.1086/344196.
32. Wang Y.M., Nash A.G., Sheeley N.R. Magnetic flux transport on the Sun. Science. 1989, vol. 245, pp. 712-718. DOI:https://doi.org/10.1126/science.245.4919.712.
33. Upton L., Hathaway D.H. Predicting the Sun’s polar magnetic fields with a surface flux transport model. The Astrophys. J. 2014, vol. 780, no. 5. DOI:https://doi.org/10.1088/0004-637X/780/1/5.
34. Yeates A.R., Baker D., van Driel-Gesztelyi L. Source of a prominent poleward surge during solar cycle 24. Solar Phys. 2015, vol. 290, pp. 3189-3201. DOI:https://doi.org/10.1007/s11207-015-0660-9.
35. Zhao J., Kosovichev A.G., Bogart R.S. Solar meridional flow in the shallow interior during the rising phase of cycle 24. Astrophys. J. 2014, vol. 789, no. L7. DOI:https://doi.org/10.1088/2041-8205/ 789/1/L7.