Новосибирск, Россия
The article presents the results of long-term observations of cosmic ray variations and changes in atmospheric parameters at midlatitudes in the Novosibirsk Region. The atmospheric response to Forbush decreases in galactic cosmic rays (CR) and solar proton events is analyzed. The analysis involves 181 Forbush decreases and 18 GLEs (Ground Level Enhancement) for the period 1967–2019. This makes it possible to examine the effect depending on season. The effect of increasing pressure during the Forbush decrease in cosmic rays is more pronounced in the autumn-winter period. Nonetheless, it also occurs in the warm season. For midlatitudes, there is also a tendency for pressure to increase after GLE. At the Forbush decrease front, with a decrease in CR intensity and an increase in atmospheric pressure, an increase in the average mass and surface temperature is observed. In the intensity recovery phase after the Forbush decrease, a decrease in the average mass and surface temperature occurs. The observed variations in atmospheric parameters are assumed to be due to changes in the ionization rate under the influence of cosmic rays in variations in atmospheric transparency and cloudiness.
cosmic rays, solar proton events, atmosphere, pressure, temperature
1. Artamonova I., Veretenenko S. Galactic cosmic ray variation influence on baric system dynamics at middle latitudes. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, iss. 2/3, pp. 366−370. DOI:https://doi.org/10.1016/j.jastp.2010.05.004.
2. Artamonova I., Veretenenko S. Atmospheric pressure variations at extratropical latitudes associated with Forbush decreases of galactic cosmic rays. Adv. Space Res. 2014, vol. 54, iss. 12, pp. 2491−2498. DOI:https://doi.org/10.1016/j.asr.2013.11.057.
3. Dorman L. Cosmic Rays in the Earth’s Atmosphere and Underground. Dordrecht, Kluwer Academic Publ., 2004, 862 p.
4. Ermakov V.I., Stozhkov Y.I. Thunderstorm Cloud Physics. Preprint N 2. Moscow, Lebedev Physical Institute, 2004, 36 p.
5. Harrison R.G., Tammet H. Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci. Rev. 2008, vol. 137, pp. 107–118. DOI:https://doi.org/10.1007/s11214-008-9356-x.
6. Kniveton D.R. Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. J. Atmos. Solar-Terr. Phys. 2004, vol. 66, iss. 13-14, pp. 1135–1142. DOI:https://doi.org/10.1016/j.jastp. 2004.05.010.
7. Kudryavtsev I.V., Jungner H. Variations in atmospheric transparency under the action of galactic cosmic rays as a possible cause of their effect on the formation of cloudiness. Geomagnetism and Aeronomy. 2011, vol. 51, рр. 656–663. DOI:https://doi.org/10.1134/S0016793211050100.
8. Lee S.H., Reeves J.M., Wilson J.C., Hunton D.E., Viggiano A.A., Miller T.M., Ballenthin J.O., Lait L.R. Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science. 2003, vol. 301, pp. 1886–1889. DOI:https://doi.org/10.1126/science.1087236.
9. Lushnikov A.A., Lyubovtseva Yu.S., Gvishiani A.D., Zagaynov V.A. Nanoaerosol formation in the troposphere under the action of cosmic radiation. Izvestiya, Atmospheric and Oceanic Physics. 2014, vol. 50, no. 2, pp. 152–159. DOI: 10.1134/ S00014 33814020078.
10. Marsh N.D., Svensmark H. Low clouds properties influenced by cosmic rays. Phys. Rev. Lett. 2000, vol. 85, pp. 5004–5007. DOI:https://doi.org/10.1103/PhysRevLett.85.5004.
11. Mustel E.R. Current state of the question about the reality of corpuscular-atmospheric connections. Solnechno-atmosfernye svyazi v teorii klimata i prognozakh pogody [Solar-atmospheric connections in climate theory and weather forecasts]. Leningrad, Gidrometeoizdat Publ., 1974, pp. 7–18. (In Russian).
12. Ney E.P. Cosmic radiation and the weather. Nature. 1959, vol. 183, pp. 451–452. DOI:https://doi.org/10.1038/183451a0.
13. Pallé E., Butler C.J., O’Brien K. The possible connection between ionization in the atmosphere by cosmic rays and low level clouds. J. Atmos. Solar-Terr. Phys. 2004, vol. 66, pp. 1779–1790. DOI:https://doi.org/10.1016/j.jastp.2004.07.041.
14. Pudovkin M.I., Raspopov O.M. Physical mechanism of the influence of solar activity and other geophysical factors on the state of the lower atmosphere and climate. Uspekhi fizicheskikh nauk. Konferentsii i simpoziumy [Advances in Physical Sciences. Conferences and symposiums.]. 1993, vol. 163, no. 7, pp. 113–116. (In Russian).
15. Pudovkin M.I., Veretenenko S.V. Cloudiness decreases associated with Forbush-decreases of galactic cosmic rays. J. Atmos. Terr. Phys. 1995, vol. 57, no. 11, pp. 1349–1355. DOI:https://doi.org/10.1016/0021-9169(94)00109-2.
16. Pudovkin M.I., Veretenenko S.V., Pellinen R., Kyrö E. Meteorological characteristic changes in the high-latitudinal atmosphere associated with Forbush decreases of the galactic cosmic rays. Adv. Space Res. 1997. vol. 20, no. 6, pp. 1169−1172. DOI:https://doi.org/10.1016/S0273-1177(97)00767-9.
17. Roldugin V.C., Tinsley B.A. Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations. J. Atmos. Solar-Terr. Phys. 2004, vol. 66, iss. 13-14, pp. 1143–1149. DOI:https://doi.org/10.1016/j.jastp.2004.05.006.
18. Shumilov O.I., Kasatkina E.A., Henriksen K., Vashenuk E. Enhancement of stratospheric aerosol after solar proton event. Ann. Geophys. 1996, vol. 4, no. 11, pp. 1119–1123. DOI:https://doi.org/10.1007/s00585-996-1119-y.
19. Svensmark H. Influence of cosmic rays on Earth’s climate. Phys. Rev. Lett. 1998, vol. 81, no. 22, pp. 5027–5030. DOI:https://doi.org/10.1103/PhysRevLett.81.5027.
20. Tinsley B.A. A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation. Adv. Space Res. 2012, vol. 50, iss. 6, pp. 791–805. DOI:https://doi.org/10.1016/j.asr. 2012.04.008.
21. Tinsley B.A., Deen G.W. Apparent tropospheric response to MeV-GeV particle flux variations: A connection via electrofreezing of supercooled water in high-level clouds? J. Geophys. Res. 1991, vol. 96, pp. 22283−22296. DOI:https://doi.org/10.1029/91JD02473.
22. Tinsley B.A., Zhou L. Initial results of a global circuit model with stratospheric and tropospheric aerosols. J. Geo-phys. Res. 2006, vol. 111, D16205. DOI:https://doi.org/10.1029/2005JD006988.
23. Tinsley B.A., Brown G.M., Scherrer P.H. Solar variability influences on weather and climate: Possible connections through cosmic ray fluxes and storm intensification. J. Geophys. Res. 1989, vol. 94, no. D12, pp. 14783–14792. DOI:https://doi.org/10.1029/JD094 iD12p14783
24. Usoskin I.G., Kovaltsov G.A. Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. J. Geophys. Res. 2006, vol. 111, D21206. DOI: 10.1029/ 2006JD007150.
25. Veretenenko S.V. Osobennosti prostranstvenno-vremennoi struktury effektov solnechnoi aktivnosti i variatsii kosmicheskikh luchei v tsirkulyatsii nizhnei atmosfery: dokt. diss. [Features of the spatio-temporal structure of the effects of solar activity and cosmic ray variations in the circulation of the lower atmosphere. Doctor of Sciences Thesis]. St Petersburg, 2017, 327 p. (In Russian).
26. Veretenenko S.V., Ogurtsov M.G. Study of spatial and temporal structure of long-term effects of solar activity and cosmic ray variations on the lower atmosphere circulation. Geomagnetism and Aeronomy. 2012, vol. 52, no. 5, pp. 591–602. DOI:https://doi.org/10.1134/S0016793212050143.
27. Veretenenko S.V., Pudovkin M.I. Effects of cosmic ray variations in the lower atmosphere circulation. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1993, vol. 33, no. 6, pp. 35–40. (In Russian).
28. Veretenenko S., Thejll P. Effects of energetic solar proton events on the cyclone development in the North Atlantic. J. Atmos. Solar-Terr. Phys. 2004, vol. 66, pp. 393–405. DOI:https://doi.org/10.1016/j.jastp.2003.11.005.
29. Veretenenko S.V., Tejll P. Solar proton events and evolution of cyclones in the North Atlantic. Geomagnetism and Aeronomy. 2008, vol. 48. no. 4, pp. 518–528. DOI:https://doi.org/10.1134/S0016793208040130.
30. Veretenenko S., Thejll P. Influence of energetic solar proton events on the development of cyclonic processes at extratropical latitudes. J. Phys.: Conf. Ser. 2013, vol. 409, 012237. DOI:https://doi.org/10.1088/1742-6596/409/1/012237.
31. URL: http://crsa.izmiran.ru/phpmyadmin (accessed April 29, 2024).
32. URL: https://www.nco.ncep.noaa.gov/pmb/products/gfs (accessed April 29, 2024).
33. URL: http://193.232.24.200/nvbk/main.htm (accessed April 29, 2024).
34. URL: https://gle.oulu.fi/ (accessed April 29, 2024).
35. URL: http://www.ckp-rf.ru/usu/433536 (accessed April 29, 2024).