FEATURES OF EARTH’S LOWER IONOSPHERE DURING SOLAR ECLIPSE AND SUNSET AND SUNRISE HOURS ACCORDING TO MEASUREMENTS BY THE API METHOD NEAR NIZHNY NOVGOROD
Аннотация и ключевые слова
Аннотация (русский):
We present the results of experimental studies into the response of Earth’s lower ionosphere to a partial solar eclipse. The studies have been carried out using the method of resonant scattering of radio waves by artificial periodic irregularities (APIs) in ionospheric plasma. The irregularities were created in the field of a standing wave when a powerful radio wave, generated by radiation to the zenith by transmitters of the mid-latitude SURA heating facility, was reflected from the ionosphere. During the eclipse, the scattered signal amplitude increased by 30–40 dB, and the relaxation time increased 1.5–2.0 times. In some cases, stratification of the signal amplitude in the D-region was observed due to stratification of the electron density profile. By analyzing altitude profiles of relaxation time, we obtained neutral component temperature and density, height of the turbopause, and turbulent velocity. The velocity of vertical regular motion of plasma at each height was measured from the time variation in the scattered signal phase. From the results of measurements of scattered signal characteristics during four partial eclipses, we have obtained that the neutral component temperature decreases, on average, 50–70 K. Variations in the temperature, vertical plasma velocity, and turbopause level exhibited deep quasi-periodic variations with periods from 15 min to several hours, typical of internal gravity wave propagation. The vertical temperature and velocity profiles showed changes with altitude on scales ranging from 5 to 30 km. Comparison between the results of studies of the lower ionosphere during sunrise-sunset hours has revealed that its response during a partial eclipse and the transition to the night regime is identical. According to the measurements by the partial reflection method, during the August 01, 2008 eclipse there was a decrease in the electron density in the D-region 3–5 times. We have concluded that during an eclipse there was a significant change in both the ionized and neutral components of the atmosphere in the lower ionosphere.

Ключевые слова:
ionosphere, plasma, neutral atmosphere, solar eclipse, sunrise, sunset, high-frequency heating, artificial periodic irregularities, temperature, vertical velocity, turbulence, internal gravity waves, SURA facility
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Afraimovich E.L., Palamartchouk K.S., Perevalova N.P., Chernukhov V.V., Lukhnev A.V., Zalutsky V.T. Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data. Geophys. Res. Lett. 1998, vol. 25, no. 4, pp. 465–469.

2. Afraimovich E.L., Kosogorov E.A., Lesyuta O.S., Yakovets A.F., Ushakov I.I. Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network. Ann. Geophys., 2001, vol. 19, no 7, pp. 723–731.

3. Akimov L.A., Grigorenko E.I., Taran V.I., Tyrnov O.F., Chernogor L.F. Integrated radiophysical and optical studies of dynamical processes in the atmosphere and geospace caused by the solar eclipse of August 11, 1999. Usp. Sovr. Radioelektron. 2002, no. 2, pp. 25–63.

4. Artem’eva G.M., Belikovich V.V., Benediktov E.A., Erukhimov L.M., Korobkov Yu.S. Measurements of the absorption of cosmic radio emission during the solar eclipse of February 15, 1961. Geomagnetism and Aeronomy. 1962, vol. 2, no. 1, pp. 58–60.

5. Babakhanov I.Y., Belinskaya A.Y., Bizin M.A., Grekhov O.M., Khomutov S.V., Kuznetsov V.V., Pavlov A.F. The geophysical disturbance during the total eclipse of the 1 August 2008 in Novosibirsk, Russia. J. Atmos. Solar-Terr. Phys. 2013, vol. 92, pp. 1–6.

6. Bamford R.A. The effect of the 1999 total Solar eclipse on the ionosphere. Phys. Chem. Earth (C). 2001, vol. 26, no. 5, pp. 373–377. DOI:https://doi.org/10.1016/S1464-1917(01)00016-2.

7. Barad R.K., Sripathi S., England S.L. Multi-instrument observations of the ionospheric response to the 26 December 2019 solar eclipse over Indian and Southeast Asian longitudes. J. Geophys. Res.: Space Phys. 2022, vol. 127, e2022JA030330. DOI:https://doi.org/10.1029/2022JA030330.

8. Bakhmetieva N.V., Grigoriev G.I. Study of the Mesosphere and Lower Thermosphere by the Method of Creating Artificial Periodic Irregularities of the Ionospheric Plasma. Atmosphere. 2022, vol. 13, 1346. DOI:https://doi.org/10.3390/atmos13091346.

9. Bakhmetieva N.V., Zhemyakov I.N. Vertical plasma motions in the dynamics of the mesosphere and lower thermosphere of the Earth. Russian Journal of Physical Chemistry B. 2022, vol. 16, no 5, pp. 990–1007. DOI:https://doi.org/10.1134/s1990793122050177.

10. Bakhmetieva N.V., Belikovich V.V., Benediktov E.A., Tolmacheva A.V. Studies of the irregular structure of the ionosphere using scattering of radio waves on artificial periodic inhomogeneities. Radiophysics and Quantum Electronics. 2001, vol. 44, no. 12, pp. 924–934.

11. Bakhmet’eva N.V., Belikovich V.V., Kagan L.M., Ponyatov A.A. Sunset-sunrise characteristics of sporadic layers of ionization in the lower ionosphere observed by the method of resonance scattering of radio waves from artificial periodic inhomogeneities of the ionospheric plasma . Radiophysics and Quantum Electronics. 2005, vol. 48, no 1, pp. 14–28. DOI:https://doi.org/10.1007/s11141-005-0044-3.

12. Bakhmet’eva N.V., Belikovich V.V., Egerev M.N., Tolmacheva A.V. Artificial periodic irregularities, wave phenomena in the lower ionosphere, and the sporadic E layer. Radiophysics and Quantum Electronics. 2010, vol. 53, pp. 69–81. DOI:https://doi.org/10.1007/s11141-010-9210-3.

13. Bakhmet’eva N.V., Bubukina V.N., Vyakhirev V.D., Kalinina E.E., Komrakov G.P. Response of the lower ionosphere to the partial solar eclipses of August 1, 2008 and March 20, 2015 based on observations of radio-wave scattering by the ionospheric plasma irregularities. Radiophysics and Quantum Electronics. 2016, vol. 59, pp. 782–793. DOI:https://doi.org/10.1007/s11141-017-9747-5.

14. Bakhmetieva N.V., Vyakhirev V.D., Kalinina E.E., Komrakov G.P. Earth’s lower ionosphere during partial solar eclipses according to observations near Nizhny Novgorod. Geomagnetism and Aeronomy. 2017, vol. 57, no. 1, pp. 58–71. DOI:https://doi.org/10.1134/S0016793217010029.

15. Bakhmetieva N.V., Kulikov Y.Y., Zhemyakov I.N. Mesosphere ozone and the lower Ionosphere under plasma disturbance by powerful high-frequency radio emission. Atmosphere. 2020, vol. 11, iss. 11, p. 1154.

16. Bakhmetieva N.V., Grigoriev G.I., Vinogradov G.R., Zhemyakov I.N., Kalinina E.E., Pershin A.V. Parameters of atmospheric turbulence and dynamics of the lower ionosphere in research at the SURA facility. Geomagnetism and Aeronomy. 2021, vol. 61, no. 6, pp. 871–887. DOI:https://doi.org/10.1134/S0016793221060025.

17. Bakhmetieva N.V., Zhemyakov I.N., Grigoriev G.I., Kalinina E.E. Impact of natural factors on the temperature in the lower thermosphere. Russ. J. Phys. Chem. B. 2023, vol. 17, pp. 1202–1215.

18. Baumann C., Kero A., Raizada S., Rapp M., Sulzer M.P., Verronen P.T., Vierinen J. Arecibo measurements of D-region electron densities during sunset and sunrise: implications for atmospheric composition. Ann. Geophys. 2022, vol. 40, pp. 519–530. DOI:https://doi.org/10.5194/angeo-40-519-2022.

19. Belikovich V.V., Benediktov E.A. Lower part of the D region of the ionosphere using artificial periodic inhomogeneities. Radiophys Quantum Electron. 1986, vol. 29, pp. 963–973. DOI:https://doi.org/10.1007/BF01034133.

20. Belikovich V.V., Benediktov E.A. Study of the twilight D region of the ionosphere using artificial periodic inhomogeneities. Radiophysics and Quantum Electronics. 2002, vol. 45, no 6, pp. 458–464.

21. Belikovich V.V., Goncharov N.P. Study of the ionospheric D-region with the help of artificial periodic irregularities. Geomagnetism and Aeronomy. 1994, vol. 34, no. 6, pp. 84–95.

22. Belikovich V.V., Benediktov E.A., Terina G.I. Diagnostics of the lower ionosphere by the method of resonance scattering of radio waves. J. Atmos. Terr. Phys.1986, vol. 48, no. 11-12, pp. 1247–1253.

23. Belikovich V.V., Benediktov E.A., Bubukina V.N., Vyakhirev V.D. Artificial periodic inhomogeneities and a model for the lower part of the D region. Radiophys Quantum Electron. 1999a, vol. 42, no 5, pp. 382–387. DOI:https://doi.org/10.1007/BF02677617.

24. Belikovich V.V., Benediktov E.A., Tolmacheva A.V., Bakhmetieva N.V. Issledovanie ionosfery s pomoshch’yu iskusstvennykh periodicheskikh neodnorodnostei [Study of the ionosphere using artificial periodic irregularities]. Nizhny Novgorod, IAP RAS Publ., 1999b, 155 p. (In Russian).

25. Belikovich V.V., Benediktov E.A., Trunov D.V. Height profiles of the amplitude and relaxation time of artificial periodic irregularities in the D-region. Geomagnetism and Aeronomy. 2000, vol. 40, pp. 733–738.

26. Belikovich V.V., Benediktov E.A., Tolmacheva A.V., Bakhmet’eva N.V. Ionospheric Research by Means of Artificial Periodic Irregularities – Copernicus GmbH, Katlenburg-Lindau, Germany. 2002, 160 p.

27. Belikovich V.V., Vyakhirev V.D., Kalinina E.E., Tereshshenko V.D., Ogloblina O.F., Tereshshenko V.A. Study of the ionospheric D layer using partial reflections at the middle latitudes and in the auroral zone. Radiophysics and Quantum Electronics. 2003a, vol. 46, no. 3, pp. 162–171.

28. Belikovich V.V., Karashtin A.N., Komrakov G.P., Shlyugaev Y.V. Simultaneous MF and HF radio sounding of the midlatitude mesosphere. Geomagnetism and Aeronomy. 2003b, vol. 43, no. 1, pp. 96–100.

29. Belikovich V.V., Vyakhirev V.D., Kalinina E.E., Tereshchenko V.D., Chernyakov S.M., Tereshchenko V.A. Ionospheric response to the partial solar eclipse of March 29, 2006, according to the observations at Nizhni novgorod and Murmansk. Geomagnetism and Aeronomy. 2008, vol. 48, no. 1, pp. 98–103. DOI:https://doi.org/10.1134/s0016793208010118.

30. Benediktov E.A., Vyakhirev V.D., Goncharov N.P., Grishkevich L.V., Ivanova V.A. Variations in electron concentration of the ionospheric D-region, Radiophysics and Quantum Electronics. 1978, vol. 21, no. 3, pp. 348–351. (In Russian).

31. Bischoff K., Taubenheim J. A study of ionospheric pulse absorption (A1) on the 4 Mc/s during the solar eclipse of May 20, 1966. J. Atmos. Terr. Phys. 1967, vol. 29, no. 9, pp. 1063−1069. DOI:https://doi.org/10.1016/0021-9169(67)90140-7.

32. Brunelli B.E., Namgaladze A.A. Physics of the ionosphere. M.: Nauka, 1988, 528 p. (In Russian).

33. Chandra H., Sharma Som, Lele P.D., Rajaram G., Arun Hanchinal. Ionospheric measurements during the total solar eclipse of 11 August 1999. Earth Planets Space. 2007, vol. 59, pp. 59−64. DOI:https://doi.org/10.1186/BF03352023.

34. Cherniak I., Zakharenkova I. Ionospheric total electron content response to the great American solar eclipse of 21 August 2017. Geophys. Res. Lett. 2018, vol. 45, no. 3, pp. 1199–1208. DOI:https://doi.org/10.1002/2017GL075989.

35. Chernogor L.F. Fizicheskie effekty solnechnykh zatmenii v atmosphere I geokosmose [Physical effects of solar eclipses in the atmosphere and geospace]. Kharkov: Publishing House of the Kharkov National University, 2013, 480 p. (In Russian).

36. Gershman B.N. Dynamics of the Ionospheric Plasma. Moscow, Nauka, 1974, 256 p. (In Russian).

37. Gershman B.N., Ignatiev Yu.A., Kamenetskaya G.Kh. Mechanisms of formation of the ionospheric sporadic layer at different latitudes. Moscow, Nauka, 1978, 108 p. (In Russian).

38. Dang T., Lei J., Wang W., Zhang B., Burns A., Le H., et al. Global responses of the coupled thermosphere and ionosphere system to the August 2017 Great American Solar Eclipse. J. Geophys. Res.: Space Phys. 2018, vol. 123, no 5, pp. 7040–7050. DOI:https://doi.org/10.1029/2018JA025566.

39. Danilkin N.P., Kochenova N.A., Svechnikov A.M. The ionospheric state over Rostov-on-Don during the solar eclipse of February 15, 1961. Geomagnetism and Aeronomy. 1961, vol. 1, no. 4, pp. 612–615. (In Russian).

40. Farges T., Le Pichon A., Blanc E., Perez S., Alcoverro B. Response of the lower atmosphere and the ionosphere to the eclipse of August 11, 1999. J. Atmos. Solar-Terr. Phys. 2003, vol. 65, no 6, pp. 717–726. DOI:https://doi.org/10.1016/S1364-6826(03)00078-6.

41. Huijun Le, Libo Liu, Xinan Yue, Weixing Wan, Baiqi Ning. Latitudinal dependence of the ionospheric response to solar eclipses. J. Geophys. Res.: Space Phys. 2009, vol. 114, iss. A7. DOI:https://doi.org/10.1029/2009JA014072.

42. Ivanov V.A., Ivanov D.V., Ryabova N.V., Ryabova M.I. Study of the specific features of HF signal propagation on inclined and NVIS radio lines during solar eclipses. Vestn. Nizhegorodskogo Univ. im. N.I. Lobachevskogo. 2012, no. 2, pp. 59–65. (In Russian).

43. Kagan L.M., Nicolls M.J., Kelley M.C., Carlson H.C., Belikovich V.V., Bakhmet’eva N.V., et al. Observation of Radio-wave-induced red hydroxyl emission at low altitude in the ionosphere. Phys. Rev. Lett. 2005, vol. 94, 095004.

44. Kovalev A.A., Kolesnik A.G., Kolesnik S.A., Kolmakov A.A. Ionospheric effects of solar eclipses at midlatitudes. Geomagnetism and Aeronomy. 2009, vol. 49, pp. 476–482. DOI:https://doi.org/10.1134/S0016793209040070.

45. Kane J.A. D-region electron density measurements during the solar eclipse of May 20, 1966. Planet. Space Sci. 1969, vol. 17, no. 4, pp. 609–616. DOI:https://doi.org/10.1016/0032-0633(69)90183-4.

46. Karashtin A.N., Shlyugaev Y.V., Abramov V.I., Belov I.F., Berezin I.V., Bychkov V.V., et al. First HF radar measurements of summer mesopause echoes at SURA. Ann. Geophys. 1997, vol. 15, no. 7, pp. 935–941.

47. Klimenko V.V., Bessarab F.S., Korenkov Y.N. Numerical simulation of effects of the August 11, 1999 solar eclipse in the outer ionosphere. Cosmic. Res. 2007, vol. 45, pp. 102–109. DOI:https://doi.org/10.1134/S0010952507020037.

48. Lei J., Dang T., Wang W., Burns A., Zhang B., Le H. Long-lasting response of the global thermosphere and ionosphere to the 21 August 2017 solar eclipse. J. Geophys. Res.: Space Phys. 2018, vol. 123, no. 5, pp. 4309–4316. DOI:https://doi.org/10.1029/2018JA025460.

49. Ladynin A.V., Semakov N.N., Khomutov S.Yu. Changes in the daily geomagnetic variation during the total solar eclipse on August 1, 2008. Russian Geology and Geophysics. 2011, vol. 52, no. 3, pp. 347–356. DOI:https://doi.org/10.1016/j.rgg.2011.02.007.

50. Madhav Haridas M.K., Manju G. On the response of the ionospheric F region over Indian low-latitude station Gadanki to the annular solar eclipse of 15 January 2010. J. Geophys. Res. 2012, vol. 117, A01302. DOI:https://doi.org/10.1029/2011JA016695.

51. MacPherson B., Gonzales S.A., Sulzer M.P., Bailey G.J., Djuth F., Rodriguez P. Measurements of the topside ionosphere over Arecibo during the total solar eclipse of February 26, 1998. J. Geophys. Res. 2000, vol. 105, no. 10, pp. 23055–23067. DOI:https://doi.org/10.1029/2000JA000145.

52. Manju G., Sridharan R., Ravindran Sudha, Madhav Haridas M.K., Tarun K. Pant, Sreelatha P., Mohan Kumar S.V. Rocket born in-situ electron density and neutral wind measurements in the equatorial ionosphere — Results from the January 2010 annual solar campaign from India. J. Atmos. Terr. Phys. 2012, vol. 86, pp. 56–64. DOI:https://doi.org/10.1016/j.jastp.2012.06.009.

53. Mathews J.D. Sporadic E: current views and recent progress. J. Atmos. Terr. Phys. 1998, vol. 60, no. 4, pp. 413–435.

54. Panasenko S.V., Yuichi Otsuka, Max van de Kamp, Chernogor L.F., Shinbori A., Tsugawa T., Nishioka M. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Solar–Terr. Phys. 2019, vol. 191, 105051. DOI:https://doi.org/10.1016/j.jastp.2019.05.015.

55. Rishbeth H. Solar eclipses and ionospheric theory. Space Sci. Rev. 1968, vol. 8, no. 4, pp. 543–544.

56. Salah J.F., Oliver W.L., Foster J.C., Holt J.M., Emery B.A., Roble R.G. Observations of the May 30, 1984, annular solar eclipse at Millstone Hill. J. Geophys. Res. 1986, vol. 91, no. A2, pp. 1651–1660. DOI:https://doi.org/10.1029/JA091iA02p01651.

57. Sneva Y., Rupesh M.D., Dabas R.S., Gwal A.K. The response of sporadic E-layer to the total solar eclipse of July 22, 2009 over the equatorial ionization anomaly region of the Indian zone. Adv. Space Res. 2013, vol. 51, pp. 2043–2047.

58. Tereshchenko V.D., Vasil’ev E.B., Yakimov M.V., Tereshchenko V.A., Ogloblina O.F., Tarichenko A.M. Radar observations over the lower polar ionosphere during the partial solar eclipse of August 11, 1999. Radiolokatsionnoe issledovanie prirodnykh sred: Tr. XVI–XIX Vserossiiskikh simpoziumov [Radar Studies of Natural Environments: Proc. XVI–XIX All-Russian Symposiums]. Saint Petersburg: VIKKA Publ., 2001, vol. 2, pp. 347–352. (In Russian).

59. Thomas L., Astin I., Prichard T. The characteristics of VHF echoes from the summer mesopause region at mid-latitudes. J. Atmos. Terr. Phys. 1992, vol. 54, pp. 969–977.

60. Tolmacheva A.V., Belikovich V.V. Measurements of the temperature and density of the upper atmosphere using artificial periodic irregularities during the summer seasons of 1999–2002. Int. J. Geomagn. Aeron. 2004, vol. 5, G11008. DOI:https://doi.org/10.1029/2004G1000061.

61. Tsai H.F., Liu J.Y. Ionospheric total electron contents response to solar eclipse. J. Geophys. Res. 1999, vol. 104, no. 6, pp. 12657–22668.

62. Uryadov V.P., Leonov A.M., Ponyatov A.A., Boiko G.N., Terent’ev S.P. Variations in the characteristics of a HF signal over an oblique sounding path during the solar eclipse on August 11, 1999. Radiophysics and Quantum Electronics. 2000, vol. 43, pp. 614–618. DOI:https://doi.org/10.1023/A:1004801201847.

63. Wang X., Berthelier J.J., Lebreton J.P. DEMETER observations during the March 29, 2006 solar eclipse. Geophysical Research Abstracts. 2008, vol. 10, EGU2008-A-06988.

64. Verronen P.T., Ulich Th., Turunen E., Rodger C.J. Sunset transition of negative charge in the D-region ionosphere during high-ionization conditions. Ann. Geophys. 2006, vol. 24, pp. 187–202. DOI:https://doi.org/10.5194/angeo-24-187-2006.

65. Vertogradov G.G., Vertogradova E.G., Uryadov V.P. The response of the ionosphere to the solar eclipse March 29, 2006 based on oblique LFM sounding data. Heliogeophysical Research. 2015, no. 11.

66. Whitehead J.D. Recent work on mid-latitude and equatorial sporadic-E. J. Atmos. Terr. Phys. 1989, vol. 51, no. 5, pp. 401–424. DOI:https://doi.org/10.1134/S1990793123050160.

67. Zherebtsov G.A., Perevalova N.P., Shpynev B.G., Medvedeva I.V., Ratovsy K.G., Khabituev D.S., Yasukevich A.S. Volnovye protsessy v atmosphere Zemli i ikh vliyanie na ionosferu [Wave Processes in the Earth’s Atmosphere and Their Effects on the Ionosphere]. Moscow: GEOS Publ., 2020, 198 p.

68. URL: http://www.wdcb.ru/stp/index.ru.html (accessed March 22, 2024).

69. URLhttps://www.izmiran.ru/ionosphere/moscow/ (accessed March 22, 2024).

Войти или Создать
* Забыли пароль?