Иркутск, Россия
Иркутск, Россия
Анализ данных GOES для вспышки SOL2012-06-29T04:09 класса C4.6 показывает тепловой характер энерговыделения в течение нескольких минут перед импульсной стадией. Нагрев плазмы до температур выше 10 MК приводит к появлению струй плазмы вдоль открытых силовых линий и в больших петлях. В работе исследуется взаимосвязь нагретой плазмы со вспышечной структурой и ее динамикой по данным наблюдений в рентгеновском, крайнем ультрафиолетовом и радиоволновом диапазонах. Особое внимание привлекает обнаружение на динамических спектрах тонких временных структур узкополосного радиоизлучения до и после импульсной стадии вспышки. На начальной стадии наблюдаются широкополосные импульсы в дециметровом диапазоне, которые можно связать с формированием тепловых фронтов в струях. Серия сверхъярких всплесков в сантиметровом диапазоне, характеризующихся частотным дрейфом, наблюдается после окончания импульсного энерговыделения в ядре вспышки. По данным Сибирского солнечного радиотелескопа (5.7 ГГц) было установлено, что источники этих субсекундных всплесков находятся в удаленном основании крупномасштабной вспышечной петли.
Солнце, тонкая временная структура, механизмы нагрева, микроволновые всплески, когерентное излучение, тепловой фронт, эффект Ньюперта
1. Бардаков В.М. Структура тепловой волны в бесстолк-новительной плазме. Физика плазмы. 1985. Т. 11, № 10. С. 1223–1230.
2. Жданов Д.А., Занданов В.Г. Первые микроволновые спектральные наблюдения двух источников во время солнечной вспышки. БШФФ-2013. Секция А: Астрофизика и физика Солнца. 2013. С. 70–71.
3. Иванов А.А. Физика сильнонеравновесной плазмы. М.: Атомиздат, 1977. 352 с.
4. Иванов А.А., Козоровицкий Л.Л., Русанов В.Д. Распространение тепла в плазме вдоль магнитного поля (волна замещения). Докл. АН СССР. 1969. Т. 184, № 4. С. 811–814.
5. Acton L.W., Feldman U., Bruner M.E., et al. The morphology of 20×106 K plasma in large non-impulsive solar flares. Publ. Astron. Soc. Japan. 1992. Vol. 44. P. L71–L75.
6. Altyntsev A.A., Fleishman G.D., Lesovoi S.V., Meshalkina N.S. Thermal to nonthermal energy partition at the early rise phase of solar flares. Astrophys. J. 2012. Vol. 758, iss. 2, 138. 12 p. DOI:https://doi.org/10.1088/0004-637X/758/2/138.
7. Arber T.D., Melnikov V.F. Thermal fronts in flaring magnetic loops. Astrophys. J. 2009. Vol. 690, iss. 1. P. 238–243. DOI:https://doi.org/10.1088/0004-637X/690/1/238.
8. Aschwanden M.J. Physics of the Solar Corona: An Introduction. Springer-Verlag; Praxis, 2004. 842 p.
9. Batchelor D.A., Crannell C.J.; Wiehl H.J., Magun A. Evidence for collisionless conduction fronts in impulsive solar flares. Astrophys. J. 1985. Vol. 295. P. 258–264. DOI: 10.1086/ 163370.
10. Battaglia M., Fletcher L., Benz A.O. Observations of conduction driven evaporation in the early rise phase of solar flares. Astron. Astrophys. 2009. Vol. 498, iss. 3. P. 891–900. DOI:https://doi.org/10.1051/0004-6361/200811196.
11. Battaglia A.F., Hudson H., Warmuth A., et al. The existence of hot X-ray onsets in solar flares. Astron. Astrophys. 2023. Vol. 679, id. A139. 14. p. DOI:https://doi.org/10.1051/0004-6361/202347706.
12. Benz A.O. Flare observations. Living Rev. Sol. Phys. 2017. Vol. 14, 2. 59 p. DOI:https://doi.org/10.1007/s41116-016-0004-3.
13. Benz A.O., Barrow C.H., Dennis B.R., et al. X-ray and radio emissions in the early stages of solar flares. Solar Phys. 1983. Vol. 83. P. 267–283. DOI:https://doi.org/10.1007/BF00148280.
14. Brown J.C., Melrose D.B., Spicer D.S. Production of a collisionless conduction front by rapid coronal heating and its role in solar hard X-ray bursts. Astrophys. J. 1979. Vol. 228. P. 592–597. DOI:https://doi.org/10.1086/156883.
15. Carmichael H.A Process for flares. The Physics of Solar Flares: Proceedings of the AAS-NASA Symposium. 1964. P. 451–456.
16. Caspi A., Lin R.P. RHESSI line and continuum observations of super-hot flare plasma. Astrophys. J. 2010. Vol. 725, iss. 2. P. L161–L166. DOI:https://doi.org/10.1088/2041-8205/725/2/L161.
17. Caspi A., Krucker S., Lin R.P. Statistical properties of super-hot solar flares. Astrophys. J. 2014. Vol. 781, 43. 11 p. DOI:https://doi.org/10.1088/0004-637X/781/1/43.
18. Caspi A., Shih A.Y., McTiernan J.M., Krucker S. Hard X-ray imaging of individual spectral components in solar flares. Astrophys. J. 2015. Vol. 811, iss. 1, L1. 8 p. DOI:https://doi.org/10.1088/2041-8205/811/1/L1.
19. Dennis B.R. Solar flare hard X-ray observations. Solar Phys. 1988. Vol. 118, iss. 1-2. P. 49–94. DOI:https://doi.org/10.1007/BF 00148588.
20. Dennis B.R., Zarro D.M. The Neupert effect: What can it tell up about the impulsive and gradual phases of solar flares. Solar Phys. 1993. Vol. 146. P. 177–190. DOI:https://doi.org/10.1007/BF00662178.
21. Fleishman G.D., Nita G.M., Gary D.E. Energy partitions and evolution in a purely thermal solar flare. Astrophys. J. 2015. Vol. 802, iss. 2, 122. 13 p. DOI:https://doi.org/10.1088/0004-637X/802/2/122.
22. Grechnev V.V., Lesovoi S.V., Smolkov G.Ya., et al. The Siberian Solar Radio Telescope: the current state of the instrument, observations, and data. Solar Phys. 2003. Vol. 216. P. 239–272. DOI:https://doi.org/10.1023/A:1026153410061.
23. Guidice D.A., Cliver E.W., Barron W.R., Kahler S. The Air Force RSTN System. Bulletin of the American Astronomical Society. 1981. Vol. 13. P. 553.
24. Hammer D.A., Rostoker N. Propagation of high current relativistic electron beams. Physics of Fluids. 1970. Vol. 13. P. 1831–1850. DOI:https://doi.org/10.1063/1.1693161.
25. Hirayama T. Theoretical model of flares and prominences. I. Evaporating flare model. Solar Phys. 1974. Vol. 34, iss. 2. P. 323–338. DOI:https://doi.org/10.1007/BF00153671.
26. Hudson H.S., Simões Paulo J.A., Fletcher Lyndsay et al. Hot X-ray onsets of solar flares. Monthly Notices of the Royal Astronomical Society. 2021. Vol. 501, iss. 1. P. 1273–1281. DOI:https://doi.org/10.1093/mnras/staa3664.
27. Ivanov A.A., Rusanov V.D., Sagdeev R.Z. Electron shock waves in a collisionless plasma. Soviet JETP Letters. 1970. Vol. 20. P. 20.
28. Jiang Y.W., Liu S., Liu W., Petrosian V. Evolution of the loop-top source of solar flares: Heating and cooling processes. Astrophys. J. 2006. Vol. 638. P. 1140–1153. DOI: 10.1086/ 498863.
29. Kochanov A.A., Anfinogentov S.A., Prosovetsky D.V., et al. Imaging of the solar atmosphere by the Siberian Solar Radio Telescope at 5.7 GHz with an enhanced dynamic range. Publ. Astron. Soc. Japan. 2013. Vol. 65, no. SP1, S19. 12 p. DOI:https://doi.org/10.1093/pasj/65.sp1.S19.
30. Kondo T., Osobe T., Igi S., et al. The Hiraiso Radio Spectrograph (HiRAS) for monitoring solar radio bursts. Journal of the Communications Research Laboratory. 1995. Vol. 42. P. 111.
31. Kopp R.A., Pneuman G.W. Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 1976. Vol. 50. P. 85–98. DOI:https://doi.org/10.1007/BF00206193.
32. Larosa T.N., Moore R.L. A Mechanism for bulk energization in the impulsive phase of solar flares: MHD turbulent cascade. Astrophys. J. 1993. Vol. 418. P. 912. DOI:https://doi.org/10.1086/173448.
33. Lee R., Sudan R.N. Return current induced by a relativistic beam propagating in a magnetized plasma. Physics of Fluids. 1971. Vol. 14. P. 1213–1225. DOI: 10.1063/ 1.1693588.
34. Lemen J.R., Title A.M., Akin D.J., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 2012. Vol. 275, no. 1-2. P. 17–40. DOI:https://doi.org/10.1007/s11207-011-9776-8.
35. Levin B.N., Melnikov V.F. Quasi-linear model for the plasma mechanism of narrow-band microwave burst generation. Solar Phys. 1993. Vol. 148, iss. 2. P. 325–340. DOI: 10.1007/ BF00645093.
36. Lin R.P., Dennis B.R., Hurford G.J., et al. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 2002. Vol. 210. P. 3–32. DOI:https://doi.org/10.1023/A:102 2428818870.
37. Liu S., Li Y., Fletcher L. Impulsive thermal X-ray emission from a low-lying coronal loop. Astrophys. J. 2013. Vol. 769, iss. 2, 135. 10 p. DOI:https://doi.org/10.1088/0004-637X/769/2/135.
38. Manheimer W.M. Energy flux limitation by ion acoustic turbulence in laser fusion schemes. Physics of Fluids.1977. Vol. 20. P. 265–270. DOI:https://doi.org/10.1063/1.861863.
39. McTiernan J.M., Fisher G.H., Li P. The solar flare soft X-ray differential emission measure and the Neupert effect at different temperatures. Astrophys. J. 1999. Vol. 514. P. 472–483. DOI:https://doi.org/10.1086/306924.
40. Meshalkina N.S., Altyntsev A.T., Zhdanov D.A. Study of flare energy release using events with numerous type III-like bursts in microwaves. Solar Phys. 2012. Vol. 280, iss.2. P. 537–549. DOI:https://doi.org/10.1007/s11207-012-0065-y.
41. Nakajima H., Nishio M., Enome S., et al. The Nobeyama Radioheliograph. Proc. IEEE. 1994. Vol. 82. P. 705.
42. Neupert W.M. Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. 1968. Vol. 153. P. L59.
43. Pesnell W.D., Thompson B.J., Chamberlin P.C. The Solar Dynamics Observatory (SDO). Solar Phys. 2012. Vol. 275, iss. 1-2. P. 3–15. DOI:https://doi.org/10.1007/s11207-011-9841-3.
44. Rust D.M., Simnett G.M., Smith D.F. Observational evidence for thermal wave fronts in solar flares. Astrophys. J. 1985. Vol. 288. P. 401–409. DOI:https://doi.org/10.1086/162804.
45. Smith D.F., Lillequist C.G. Confinement of hot, hard X-ray producing electrons in solar flares. Astrophys. J. 1979. Vol. 232. P. 582–589. DOI:https://doi.org/10.1086/157316.
46. Somov B.V., Kosugi T., Sakao T. Collisionless three-dimensional reconnection in impulsive solar flares. Astrophys. J. 1998. Vol. 497, iss. 2. P. 943–956. DOI:https://doi.org/10.1086/305492.
47. Sturrock P.A. Model of the high-energy phase of solar flares. Nature. 1966. Vol. 211, iss. 5050. P. 695–697. DOI: 10.1038/ 211695a0.
48. Torii C., Tsukiji Y., Kobayashi S., et al. Full-automatic radiopolarimeters for solar patrol at microwave frequencies. Proc. of the Research Institute of Atmospherics. Nagoya University, 1979. Vol. 26. P. 129–132.
49. Van den Oord G.H.J. The electrodynamics of beam/return current systems in the solar corona. Astron. Astrophys.1990. Vol. 234, no. 1-2. P. 496–518.
50. Veronig A., Vršnak B., Dennis B.R., et al. Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model. Astrophys. J. 2002a. Vol. 392. P. 699–712. DOI:https://doi.org/10.1051/0004-6361:20020947.
51. Veronig A., Vršnak B., Temmer M., Hanslmeier A. Relative timing of solar flares observed at different wavelengths. Solar Phys. 2002b. Vol. 208, iss.2. P. 297–315. DOI: 10.1023/ A:1020563804164.
52. Veronig A.M., Brown J.C., Dennis B.R., et al. Physics of the Neupert effect: Estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. Astrophys. J. 2005. Vol. 621. P. 482–497. DOI:https://doi.org/10.1086/427274.
53. Vlahos L., Papadopoulos K. Collective plasma effects associated with the continuous injection model of solar flare particle streams. Astrophys. J. 1979. Vol. 233. P. 717–726. DOI:https://doi.org/10.1086/157433.
54. Zhdanov D.A., Zandanov V.G. Broadband microwave spectropolarimeter. Central European Astrophysical Bulletin. 2011. Vol. 35. P. 223.
55. URL: http://ru.iszf.irk.ru/~nata/120629/long.mp4 (дата обра-щения 26 марта 2024 г.).
56. URL: http://ckp-rf.ru/usu/73606/ (дата обращения 26 марта 2024 г.).
57. URL: http://ckp-angara.iszf.irk.ru/ (дата обращения 26 марта 2024 г.).