Изучение спектрометрических особенностей лесных семян для улучшения посевных качеств: ретроспективный кластерный анализ направлений научного ландшафта
Аннотация и ключевые слова
Аннотация (русский):
Спектральные данные лесных семян в видимом и инфракрасном диапазонах длин электромагнитного излучения достаточно эффективно дифференцируют происхождение, жизнеспособность, виды семян, их зараженность вредителями и болезнями, способность впитывать и терять воду. Поиск одновременно инструментально простого, быстрого и эффективного для прогнозирования всхожести способа тестирования семян необходим для повышения энергоэффективности лесных питомников при производстве посадочного материала. Ретроспективная систематизация источников (N = 55, 1998-2023 годы, терм [Scholar Query = seeds* AND (spectr* OR optic*) (properties OR features) AND analysis] в кластеры проведена на основании восьми критериев эффективности, представленных ранговыми переменными. Уровень сходства и различия между кластерами определен методом наиболее отдаленных соседей с группировкой данных по квадрату евклидова расстояния. Наиболее отдаленный от других критерий – уровень инвазивности тестирования (квадрат Евклидова расстояния – 25, p < 0.05). Корреляционный анализ непараметрических критериев указывает на прямое сильное взаимодействие между уровнем финансовых и организационных затрат (коэффициент Спирмена ρ = 0,77; p = 0.0008), временных затрат и малой возможности машинного обучения (ρ = 0,725; p = 0.0008). В будущем планируется периодически дополнять набор систематических данных для получения объективной оценки способов тестирования семян, а также с помощью паспорта семени оценить взаимосвязь RGB-спектральных данных более 1000 отдельных семян c ранним ростом сеянцев на пост-пирогенном экспериментальном участке лесного ландшафта Воронежской области на примере (Pinus sylvestris L. var. Negorelskaya).

Ключевые слова:
лесные семена, тестирование семян, впитывание воды семенами, всхожесть семян, качество семян, искусственное лесовосстановление, планшетный сканер, RGB-спектральные данные, сегментирование изображения
Список литературы

1. McDonald, M.B. Computer Imaging to Improve Seed Quality Determinations / M.B. McDonald, K. Fujimura, Y. Sako et al. // Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology. - 2015. - P. 15-28. - Mode of access: http://doi.wiley.com/10.2134/asaspecpub66.c2.

2. Novikov, A.I. The effect of sorting Scots pine seeds by color and size on their soil germination in containers // Coniferous boreal zones. - 2019. - Vol. 37. - № 5. - P. 313-319. - URL: https://www.elibrary.ru/item.asp?id=42337219.

3. New optoelectronic systems for express analysis of seeds in forestry production / S.V. Sokolov et al. // Forestry Engineering Journal. - 2019. - Vol. 9, № 2(34). - P. 5-13. - DOIhttps://doi.org/10.34220/issn.2222-7962/2019.2/1. - https://elibrary.ru/CNXAWZ.

4. Novikov, A.I. Express analysis of forest seeds by biophysical methods - Voronezh : Voronezh State University of Forestry and Tecnologies named after G.F. Morozov, 2018. - 128 p. - URL: https://elibrary.ru/yzuzgx.

5. The effect of the individual seed mass of Negorelskaya variety Scots pine (Pinus sylvestris L.) on 30-day germination in 40-cell SideSlit growing containers / S. Rabko et al. // Forestry Engineering Journal. - 2023. - Vol. 13. - № 2. - P. 59-86. - DOI: https://doi.org/10.34220/issn.2222-7962/2023.2/4.

6. The study of spectrometric parameters of seeds as the basis for the intensification of the process of reforestation of Scots pine cultivars of the “Negorelskaya” variety : grant RCF 23-26-00228. - М. : RCF, 2023. - URL: https://elibrary.ru/jtyxux.

7. The influence of the climatic index of degree days on the vitality of 3-year-old seedlings of scots pine from seeds sorted by spectrometric properties / V.I. Malysheva et al. // Лесотехнический журнал. - 2022. - Vol. 12. - № 1. - P. 110-118. - DOI: https://doi.org/10.34220/issn.2222-7962/2022.1/9.

8. Rebko, S.V. The variety of common pine “Negorelskaya” in Belarus: the first, the only, unique / S.V. Rebko, L.F. Poplavskaya, V.N. Balanchuk // Forest resources - Belarusian polesie : proceedings of the international conference of young scientists, Gomel, September 24-27, 2018. - Gomel : Beldruk Printing House LLC, 2018. - P. 66-68. - URL: https://elibrary.ru/suuwhw.

9. Sviridov, L.T. The historical aspect of the problem of sorting forest seeds // Forest in the life of the Eastern Slavs: from Kievan Rus to the present day. - Gomel : FI NAS B, 2003. - P. 186-190. URL: https://elibrary.ru/tskkll.

10. Sviridov, L.T. Promising technical means for processing coniferous seeds / L.T. Sviridov, N.D. Gomzyakov // Forestry. - 2007. - Vol. 2. - P. 44-46. URL: https://elibrary.ru/hzdxmt.

11. Andivia, E. How can my research paper be useful for future meta-analyses on forest restoration plantations? / E. Andivia, P. Villar-Salvador, J.A. Oliet et al. // New Forests. - 2019. - Vol. 50. - № 2. - P. 255-266. - DOI: https://doi.org/10.1007/s11056-018-9631-y.

12. Bernardes, R.C. Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology / R.C. Bernardes, A. De Medeiros, L. da Silva et al. // Agriculture. - 2022. - Vol. 12. - № 11. - P. 1801. - DOI: https://doi.org/10.3390/agriculture12111801.

13. Boelt, B. Multispectral imaging - a new tool in seed quality assessment? / B. Boelt, S. Shrestha, Z. Salimi et al. // Seed Science Research. - 2018. - Vol. 28. - № 3. - P. 222-228. - DOI: https://doi.org/10.1017/S0960258518000235.

14. Castro, É.B. de L. Classification of Phaseolus lunatus L. using image analysis and machine learning models / É.B. de L. Castro, R. de S. Melo, E.M. da Costa et al. // Revista Caatinga. - 2022. - Vol. 35. - № 4. - P. 772-782. - DOI: https://doi.org/10.1590/1983-21252022v35n404rc.

15. Cuzzuol, G.R.F. Relationship between N, P, and K and the quality and stem structural characteristics of Caesalpinia echinata Lam. plants / G.R.F. Cuzzuol, C.R.D. Milanez, J.M.L. Gomes et al. // Trees. - 2013. - Vol. 27. - № 5. - P. 1477-1484. - DOI: https://doi.org/10.1007/s00468-013-0894-9.

16. Dell’Aquila, A. Digital Imaging Information Technology Applied to Seed Germination Testing: A Review / A. Dell’Aquila // Sustainable Agriculture / E. Lichtfouse et al. eds. . - Dordrecht : Springer Netherlands, 2009. - P. 377-388.

17. Dornyak, O. Immersion Freezing of a Scots Pine Single Seed in a Water-Saturated Dispersion Medium: Mathematical Modelling / O. Dornyak, A. Novikov // Inventions. - 2020. - Vol. 5. - № 4. - P. 51. - DOI: https://doi.org/10.3390/inventions5040051.

18. Downie, B. Upgrading germinability and vigour of jack pine, lodgepole pine, and white spruce by the IDS technique / B. Downie, B.S.P. Wang // Canadian Journal of Forest Research. - 1992. - Vol. 22. - № 8. - P. 1124-1131. - DOI: https://doi.org/10.1139/x92-149.

19. Drapalyuk, M. 140th anniversary of the birthday of Alexander Vladimirovich Tyurin / M. Drapalyuk, A. Sivolapov, V. Bugakov, M. Razinkov // Forestry Engineering Journal. - 2023. - Vol. 12. - № 4. - P. 5-13. - DOI: https://doi.org/10.34220/issn.2222-7962/2022.4/1.

20. ElMasry, G. Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring-An Overview / G. ElMasry, N. Mandour, S. Al-Rejaie et al. // Sensors. - 2019. - Vol. 19. - № 5. - P. 1090. - DOI: https://doi.org/10.3390/s19051090.

21. Esteve Agelet, L. Limitations and current applications of Near Infrared Spectroscopy for single seed analysis / L. Esteve Agelet, C.R. Hurburgh // Talanta. - 2014. - Vol. 121. - P. 288-299. - DOI: https://doi.org/10.1016/j.talanta.2013.12.038.

22. Gallardo-Salazar, J.L. Seedling quality and survival of a true fir [Abies religiosa (Kunth) Schltdl. et Cham.] forest plantation from two provenances in central Mexico / J.L. Gallardo-Salazar, D.A. Rodríguez-Trejo, S. Castro-Zavala // Agrociencia. - 2019. - Vol. 53. - № 4. - P. 631-643.

23. Grossnickle, S. Seedling Quality: History, Application, and Plant Attributes / S. Grossnickle, J. MacDonald // Forests. - 2018. - Vol. 9. - № 5. - P. 283. - DOI: https://doi.org/10.3390/f9050283.

24. Himanen, K. Seed quality attributes in seedling production of Norway spruce (Picea abies (L.) Karst.) / K. Himanen // Dissertationes Forestales. - 2018. - Vol. 261. - P. 74. - DOI: https://doi.org/10.14214/df.261.

25. Hornberg, A. Handbook of machine vision / A. Hornberg. - Ladenburg : John Wiley & Sons, 2007. - 798 p.

26. Hu, J. Rapid evaluation of the quality of chestnuts using near-infrared reflectance spectroscopy / J. Hu, X. Ma, L. Liu et al. // Food Chemistry. - 2017. - Vol. 231. - P. 141-147. - DOI: https://doi.org/10.1016/j.foodchem.2017.03.127.

27. Ivetić, V. The role of forest reproductive material quality in forest restoration / V. Ivetić, A.I. Novikov // Forestry Engineering Journal. - 2019. - Vol. 9. - № 2. - P. 56-65. - DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/7.

28. Kang, K.-S. Seed orchards (Establishment, Management and Genetics) / K.-S. Kang, N. Bilir. - Ankara, Turkey : OGEM-VAK Press, 2021. - 1-189 p.

29. Keefe, R.F. Marked, biased, filter (MBF): use of digital X-radiography and mark-recapture to partition seed lots based on sampled individual seed quality attributes / R.F. Keefe, A.S. Davis // New Forests. - 2012. - Vol. 43. - № 2. - P. 169-184. - DOI: https://doi.org/10.1007/s11056-011-9271-y.

30. Khouja, M. Lipid Profile Quantification and Species Discrimination of Pine Seeds through NIR Spectroscopy: A Feasibility Study / M. Khouja, R.N.M.J. Páscoa, D. Melo et al. // Foods. - 2022. - Vol. 11. - № 23. - P. 3939. - DOI: https://doi.org/10.3390/foods11233939.

31. Lamichhane, J.R. Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework / J.R. Lamichhane, P. Debaeke, C. Steinberg et al. // Plant and Soil. - 2018. - Vol. 432. - № 1-2. - DOI: https://doi.org/10.1007/s11104-018-3780-9.

32. Lestander, T.A. NIR spectral information used to predict water content of pine seeds from multivariate calibration / T.A. Lestander, P. Geladi // Canadian Journal of Forest Research. - 2005. - Vol. 35. - № 5. - P. 1139-1148. - DOI: https://doi.org/10.1139/x05-046.

33. Lestander, T.A. NIR spectroscopic measurement of moisture content in Scots pine seeds / T.A. Lestander, P. Geladi // The Analyst. - 2003. - Vol. 128. - № 4. - P. 389. - DOI: https://doi.org/10.1039/b300234a.

34. Li, H. Near-Infrared Spectroscopy Coupled Chemometric Algorithms for Rapid Origin Identification and Lipid Content Detection of Pinus Koraiensis Seeds / H. Li, D. Jiang, J. Cao, D. Zhang // Sensors. - 2020. - Vol. 20. - № 17. - P. 4905. - DOI: https://doi.org/10.3390/s20174905.

35. Mataruga, M. Monitoring and control of forest seedling quality in Europe / M. Mataruga, B. Cvjetković, B. De Cuyper et al. // Forest Ecology and Management. - 2023. - Vol. 546. - № August. - P. 121308. - DOI: https://doi.org/10.1016/j.foreco.2023.121308.

36. Mohan, M. Uav-supported forest regeneration: Current trends, challenges and implications / M. Mohan, G. Richardson, G. Gopan et al. // Remote Sensing. - 2021. - Vol. 13. - № 13. - DOI: https://doi.org/10.3390/rs13132596.

37. Frontier technique of creating protective forests stands around nurseries on inefficient sites: technological foundations / V. Ivetic et al. // Forestry Engineering Journal. - 2022. - Vol. 12. - № 2. - P. 115-125. - DOI: https://doi.org/10.34220/issn.2222-7962/2022.2/10.

38. Detection of Scots pine single seed in optoelectronic system of mobile grader: mathematical modeling / M. Tigabu et al. // Forests. - 2021. - Vol. 12. - № 2. - P. 240. - DOI: https://doi.org/10.3390/f12020240.

39. Novikov, A.I. About new means of forest seeds sorting in coniferous breeds [in Russian - O novykh sposobakh sortirovaniya lesnykh semyan khvoynykh porod] // Forests of Eurasia in the third millennium: Proceedings of the international conference of young scientists. - Moscow, Russian Federation, 2001. - P. 90-91. https://elibrary.ru/rxiqqj.

40. Novikov, A.I. Improvement of technology for obtaining high-quality forest seed material : advanced Doctoral Thesis. - Voronezh State University of Forestry and Technologies, 2021. - 341 p. https://elibrary.ru/jxtbsb.

41. Novikov, A.I. Some technological features of the sorting devices and development trends // Forest and youth VSAFE - 2000: proceedings of the anniversary scientific conference of young scientists dedicated to 70-th anniversary of VSAFE. - Voronezh, Russian Federation, 2000. - P. 53-60. https://elibrary.ru/snisit.

42. Novikov, A.I. Visible wave spectrometric features of Scots pine seeds: the basis for designing a rapid analyzer / A.I. Novikov // IOP Conference Series: Earth and Environmental Science. - 2019. - Vol. 226. - № 1. - P. 012064. - DOI: https://doi.org/10.1088/1755-1315/226/1/012064.

43. Mechanization of coniferous seeds grading in Russia: a selected literature analysis / B.T. Ersson et al. // IOP Conference Series: Earth and Environmental Science. - 2020. - Vol. 595. - P. 012060. - DOI: https://doi.org/10.1088/1755-1315/595/1/012060.

44. The effect of seed coat color grading on height of one-year-old container-grown Scots pine seedlings planted on post-fire site / V. Ivetić et al. // IOP Conference Series: Earth and Environmental Science. - 2019. - Vol. 226. - P. 012043. - DOI: https://doi.org/10.1088/1755-1315/226/1/012043.

45. Scots pine seedlings growth dynamics data reveals properties for the future proof of seed coat color grading conjecture / V. Ivetić et al. // Data. - 2019. - Vol. 4. - № 3. - P. 106. - DOI: https://doi.org/10.3390/data4030106.

46. Dickson Quality Index: relation to technological impact on forest seeds / S. Rabko et al. // Forestry Engineering Journal. - 2023. - Vol. 13. - № 1. - P. 23-36. - DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/2.

47. Performance of Scots pine seedlings from seeds graded by colour / M.V. Drapalyuk et al. // Forests. - 2019. - Vol. 10. - № 12. - P. 1064. - DOI: https://doi.org/10.3390/f10121064.

48. Aerial seeding of forests in Russia: A selected literature analysis / B.T. Ersson et al. // IOP Conference Series: Earth and Environmental Science. - 2019. - Vol. 226. - № 1. - P. 012051. - DOI: https://doi.org/10.1088/1755-1315/226/1/012051.

49. Novikova, T.P. Economic evaluation of mathematical methods application in the management systems of electronic component base development for forest machines / T.P. Novikova, A.I. Novikov // IOP Conference Series: Earth and Environmental Science. - 2019. - Vol. 392. - № 1. - P. 012035. - DOI: https://doi.org/10.1088/1755-1315/392/1/012035.

50. Reforestation pipeline: case for quality management of NIR-region grading of Scots pine seeds and FLR-algorithm for information processing / E.P. Petrishchev et al. // Silva Balcanica. - 2023. - Vol. 24. - № 3. - DOI: https://doi.org/10.3897/silvabalcanica.24.e114699.

51. The Root Collar Diameter Growth Reveals a Strong Relationship with the Height Growth of Juvenile Scots Pine Trees from Seeds Differentiated by Spectrometric Feature / C.B. Mastrangelo et al. // Forests. - 2023. - Vol. 14. - № 6. - P. 1164. - DOI: https://doi.org/10.3390/f14061164.

52. Ozbey, A. Block effect on genetic parameters in a 23-year-old progeny trial of Pinus brutia / A. Ozbey, N. Bilir // Forestry Engineering Journal. - 2022. - Vol. 12. - № 2. - P. 5-13. - DOI: https://doi.org/10.34220/issn.2222-7962/2022.2/1.

53. Royer-Tardif, S. Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options / S. Royer-Tardif, J. Bauhus, F. Doyon et al. // Forests. - 2021. - Vol. 12. - № 3. - P. 273. - DOI: https://doi.org/10.3390/f12030273.

54. Saha, R. Integrated assessment of adventitious rhizogenesis in Eucalyptus: root quality index and rooting dynamics / R. Saha, H.S. Ginwal, G. Chandra, S. Barthwal // Journal of Forestry Research. - 2020. - Vol. 31. - № 6. - P. 2145-2161. - DOI: https://doi.org/10.1007/s11676-019-01040-6.

55. Santos, C.C. Morphophysiology and quality of Alibertia edulis seedlings grown under light contrast and organic residue / C.C. Santos, A. Goelzer, O.B. da Silva et al. // Revista Brasileira de Engenharia Agrícola e Ambiental. - 2023. - Vol. 27. - № 5. - P. 375-382. - DOI: https://doi.org/10.1590/1807-1929/agriambi.v27n5p375-382.

56. Sokolov, S. V. How to increase the analog-to-digital converter speed in optoelectronic systems of the seed quality rapid analyzer / S. V. Sokolov, V. V. Kamenskij, V. Ivetić // Inventions. - 2019. - Vol. 4. - № 4. - P. 61. - DOI: https://doi.org/10.3390/inventions4040061.

57. Sokolov, S.V. New optoelectronic systems for express analysis of seeds in forestry production / S.V. Sokolov et al. // Forestry Engineering Journal. - 2019. - Vol. 9. - № 2. - P. 5-13. - DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/1.

58. Tigabu, M. Characterization of forest tree seed quality with near infrared spectroscopy and multivariate analysis: PhD Thesis / M. Tigabu. - 2003. - 56 pp. + Papers I-VII p.

59. Tigabu, M. Multivariate discriminant analysis of single seed near infrared spectra for sorting dead-filled and viable seeds of three pine species: does one model fit all species? / M. Tigabu, A. Daneshvar, R. Jingjing et al. // Forests. - 2019. - Vol. 10. - № 6. - P. article id 469. - DOI: https://doi.org/10.3390/f10060469.

60. Vale, A.M.P.G. A new automatic approach to seed image analysis: From acquisition to segmentation / A.M.P.G. Vale, M. Ucchesu, C. Di Ruberto et al. - 2020. - DOI: https://doi.org/10.48550/arXiv.2012.06414.

61. Wang, D. Single Wheat Kernel Color Classification by Using Near-Infrared Reflectance Spectra / D. Wang, F.E. Dowell, R.E. Lacey // Cereal Chemistry. - 1999. - Vol. 76. - № 1. - P. 30-33. - DOI: https://doi.org/10.1094/CCHEM.1999.76.1.30.

62. Wang, D. Single wheat kernel size effects on near-infrared reflectance spectra and color classification / D. Wang, F.E. Dowell, R.E. Lacey // Cereal Chemistry. - 1999. - Vol. 76. - № 1. - P. 34-37. - DOI: https://doi.org/10.1094/CCHEM.1999.76.1.34.

63. Yazici, N. Aspectual Fertility Variation and Its Effect on Gene Diversity of Seeds in Natural Stands of Taurus Cedar (Cedrus libani A. Rich.) / N. Yazici, N. Bilir // International Journal of Genomics. - 2017. - Vol. 2017. - P. 1-5. - DOI: https://doi.org/10.1155/2017/2960624.

64. Zhao, F. Relationships between understory vegetation coverage and environmental factors in Pinus massoniana plantations from aerial seeding / F. Zhao, X.Z. Ouyang // Chinese Journal of Applied Ecology. - 2015. - Vol. 26. - № 4. - P. 1071-1076.


Войти или Создать
* Забыли пароль?