SOLAR FLARES WITH SUSTAINED GAMMA-RAY EMISSION AND SOME CHARACTERISTICS OF HIGH-ENERGY PROTON FLUXES
Аннотация и ключевые слова
Аннотация (русский):
We describe the characteristics of long-term gamma fluxes with quantum energies >100 MeV, obtained from Fermi/LAT data during the impulsive phase of the most energetic flare phenomena. We compare GOES data on proton fluxes with energies >500 MeV with Fermi/LAT data on gamma fluxes for the period 2010–2018. The results of the analysis of all data obtained on 32 gamma-ray flares from the Fermi/LAT catalog show that the flare phenomena can be classified into three different types: type 1 — gamma fluxes accompanied by energetic proton fluxes; type 2 — gamma rays recorded in the absence of increases in proton fluxes; type 3 — gamma fluxes not recorded during observed increases in energetic proton fluxes. The burst character of energy release in the hard X-ray range was noted in some flares.

Ключевые слова:
flares, coronal mass ejections, particle acceleration
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Altyntsev A.T., Banin V.G., Kuklin G.V., Tomozov V.M. Solnechnyye vspyshki [Solar Flares]. Moscow, Nauka Publ., 1982. 246 p. (In Russian).

2. Golovko A.A., Kuklin G.V., Mordvinov A.V, Tomozov V.M. The role of shear motions in the production of a preflare situation. Contributions of the Astronomical Observatory Skalnate Pleso. 1986, vol. 15, pp. 243-250.

3. Gopalswamy N., Makela P., Yashiro S., Lara A., Xie H., Akiyama S., MacDowall R.J. Interplanetary type II radio bursts from Wind/WAVES and sustained gamma-ray emission from Fermi/LAT: Evidence for shock source. Astrophys. J. Lett. 2018, vol. 868, no. 2, L19, 8 p. DOI:https://doi.org/10.3847/2041-8213/aaef36.

4. Gopalswamy N., Makela P., Yashiro S., Lara A., Xie H., Akiyama S., MacDowall R.J. Fermi, Wind and SOHO observations of sustained gamma-ray emission from the Sun. arXiv:1810.08958v1. DOI:https://doi.org/10.48550/arXiv.1810.08958.

5. Grechnev V.V., Kiselev V.I., Kashapova L.K., Kochanov A.A., Zimovets I.V., Uralov A.M., Nizamov B.A., Grigorieva I.Y., et al. Radio, hard X-ray and gamma-ray emission associated with a far-side solar event. Solar Phys. 2018, vol. 293, iss. 10, id. 133, 31 p. DOI:https://doi.org/10.1007/s11207-018-1352-z.

6. Livshits M.A. Solar flares: observational results and gas-dynamics processes. Plazmennaya Geliofizika [Plasma Heliophysics]. Moscow, Nauka Publ., 2008, vol. 1, pp. 60-81. (In Russian).

7. Manchester W., Kilpua K.J., Liu Y.D., Lugaz N., Riley P., Török T., Vršnak B. The physical processes of CME/ICME evolution. Space Sci. Rev. 2017, vol. 212, pp.1159-1219. DOI:https://doi.org/10.1007/s11214-017-0394-0.

8. Minasyants G.S., Minasyants T.M., Tomozov V.M. Features of development of gamma-rays in a solar flare February 25, 2014. News National Academy RK, Phys.-Math. Ser. 2018, vol. 4, No. 320, pp. 15-21.

9. Minasyants G.S., Minasyants T.M., Tomozov V.M. Features of development of sustained fluxes of high-energy gamma-ray emission at different stages of solar flares. Solar-Terr. Phys. 2019, vol. 5, no. 3, pp. 10-17. DOI:https://doi.org/10.12737/stp-53201902.

10. Murphy R.J., Dermer C.D., Ramaty R. High-energy processes in solar flares. Astrophys. J. Suppl. 1987, vol. 63, pp. 721-748. DOI:https://doi.org/10.1086/191180.

11. Omodei N., Pesce-Rollins М., Longo F. Allafort A., Krucker S. Fermi-LAT Observations of the 2017 September 10th Solar Flare. Astrophys. J. Lett. 2018, vol. 865, no. 1, pp. 1-6. DOI:https://doi.org/10.3847/2041-8213/aae077.

12. Plotnikov I., Rouillard A.P., Share G.H. The magnetic connectivity of coronal shocks from behind-the-limb flares to the visible solar surface during γ-ray events. Astronomy and Astrophysics. 2017, vol. 608, A43. DOI:https://doi.org/10.1051/0004-6361/201730804.

13. Priest E.R., Forbes T. Magnetic Reconnection: MHD Theory and Applications Cambridge, Cambridge University Press, 2000, 612 p.

14. Share G.H., Murphy R.J., Tolbert A.K., Dennis B.R., White S.M., Schwartz R.A., Tylka A.J. Characteristics of sustained >100 MeV gamma-ray emission associated with solar flares. arXiv. 2017. 83 p. DOI:https://doi.org/10.48550/arXiv.1711.01511.

15. Share G.H., Murphy R.J., White S.M., Tolbert A.K., Dennis B.R., Schwartz R.A., et al. Characteristics of late-phase >100 MeV gamma-ray emission in solar eruptive events. Astrophys. J. 2018, vol. 869, 182. DOI:https://doi.org/10.3847/1538-4357/aaebf7.

16. Somov B.V. Plasma Astrophysics: Reconnection and Flares. New York, Springer, 2013, 504 p.

17. Tylka A.J., Share G.H., Dietrich W.F., Murphy R.J., Ng C.K., Shea M.A., Smart D.F. Solar protons above 500 MeV in the Sun’s atmosphere and in interplanetary space. Geophys. Res. Abstracts. 2014, vol. 16, EGU 2014-16847.

18. URL: https://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL_ ver1/2017_09/univ2017_09.html (accessed September 17, 2023).

19. URL: https://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html (accessed September 17, 2023).

Войти или Создать
* Забыли пароль?