Национальный исследовательский университет «Высшая школа экономики»
Москва, Россия
Москва, Россия
Москва, Россия
Москва, Россия
Москва, Россия
We present the results of Auroral Kilometric Radiation (AKR) measurements near the plasmapause on the ERG (Arase) satellite. The apogee of the satellite's orbit is located near the ecliptic plane, at latitudes ±30°. According to the generally accepted point of view, AKR observation is impossible in this region since it is shielded by the plasmasphere. Simultaneous measurements of AKR and local plasma density made it possible to determine that AKR in near-equatorial regions occur in plasma channels — density inhomogeneities elongated along magnetic field lines. AKR from sources located in the auroral magnetosphere is transferred by these channels to the equatorial region. This work analyzes the conditions for the capture and propagation of AKR in low plasma density channels. In the geometrical optics approximation, we have simulated the conditions for the radiation capture and propagation. The calculation results show that the proposed scheme for AKR capture into plasma channels can explain the measurement results — the radiation transfer from the auroral region to the near-equatorial region.
auroral kilometric radiation, radiation capture into the channel, plasma inhomogeneities, artificial Earth satellite, space experiment, upper hybrid resonance frequency
1. Baumjohann W., Treumann R.A. Auroral kilometric radiation - the electron cyclotron maser paradigm. Front. Astron. Space Sci. 2022, vol. 9, 1053303. DOI:https://doi.org/10.3389/fspas.2022. 1053303.
2. Benediktov E.A., Getmancev G.G., Mitjakov N.A., Rapoport V.A., Sazonov Ju.A., Tarasov A.F. Results of measuring the intensity of radio emission at 725 and 1525 kHz frequencies using the equipment installed on “ELECTRON-2” satellite. Issledovaniya kosmicheskogo prostranstva [Space exploration]. Moscow, Nauka Publ., 1965, pp. 581-606. (In Russian).
3. Burinskaya T.M., Rosh Zh.L. Waveguide regime of cyclotron maser instability in plasma regions with reduced density. Fizika plazmy [Plasma Phys.]. 2007, vol. 33, no. 1, pp. 28-37 (In Russian).
4. Calvert W. Ducted auroral kilometric radiation. Geophys. Res. Lett. 1982, vol. 9, no. 1, pp. 56-59. DOI:https://doi.org/10.1029/GL009 i001p00056.
5. Chernyshov A.A., Chugunin D.V., Mogilevsky M.M. Auroral kilometric radiation as a diagnostic tool for the properties of the magnetosphere. JETP Lett. 2022a, vol. 115, pp. 23-28. DOI:https://doi.org/10.1134/S0021364022010076.
6. Chernyshov A.A., Mogilevsky M.M., Chugunin D.V., Kolpak V.I. Simultaneous observation of auroral kilometric radiation from northern and southern sources. Bulletin of the Russian Academy of Sciences: Physics. 2022b, vol. 86, no. 3, pp. 295-299. DOI:https://doi.org/10.3103/S1062873822030078.
7. Chugunin D.V., Chernyshov A.A., Moiseenko I.L., Mogilevsky M.M., Viktorov M.E. Monitoring of the electron-acceleration region with auroral kilometric radiation. Geomagnetism and Aeronomy. 2020, vol. 60, no. 5, pp. 538-546. DOI:https://doi.org/10.1134/S0016793220040039.
8. Gurnett D.A. The Earth as a radio source: Terrestrial kilometric radiation. J. Geophys. Res. 1974, vol. 79, no. 28, pp. 4227-4238. DOI:https://doi.org/10.1029/JA079i028p04227.
9. Hanasz J., Panchenko M., De Feraudy H., Schreiber R., Mogilevsky M.M. Occurrence distributions of the auroral kilometric radiation ordinary and extraordinary wave modes. J. Geophys. Res. 2003, vol. 108, no. A11, 1408. DOI: 10.1029/ 2002JA009579.
10. Kolpak V.I., Mogilevsky M.M., Chugunin D.V., Chernyshov A.A., Moiseenko I.L., Kumamoto A., Tsuchiya F., et al. Statistical properties of auroral kilometer radiation: based on ERG (Arase) satellite data. Solar-Terr. Phys. 2021, vol. 7, iss. 1, pp. 11-16. DOI:https://doi.org/10.12737/stp-71202102.
11. Kasahara Y., Kasaba Y., Kojima H., Yagitani S., Ishisaka K., Kumamoto A., et al. The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite. Earth, Planets and Space. 2018, vol. 70, 86 p. DOI:https://doi.org/10.1186/s40623-018-0842-4.
12. Kumamoto A., Tsuchiya F., Kasahara Y., Kasaba Y., Kojima H., Yagitani S., et al. High Frequency Analyzer (HFA) of Plasma Wave Experiment (PWE) onboard the Arase spacecraft. Earth, Planets and Space. 2018, vol. 70, 82 p. DOI:https://doi.org/10.1186/s40623-018-0854-0.
13. Kurth W.S., Baumback M.M., Gurnett D.A. Direction-finding measurements of auroral kilometric radiation. J. Geophys. Res. 1975, vol. 80, no. 19, p. 2764.
14. Landsberg G.S. Optica: ucheb. posobie dlya vuzov [Optics: Tutorial]. Moscow, Fizmatlit Publ., 2003, 848 p. (In Russian).
15. Louarn P., Le Quéau D. Generation of the auroral kilometric radiation in plasma cavities. II. The cyclotron maser instability in small size sources. Planet. Space Sci. 1996, vol. 44, no. 3, pp. 211-224. DOI:https://doi.org/10.1016/0032-0633(95)00122-0.
16. Miyoshi Y., Shinohara I., Takashima T., Asamura K., Higashio N., Mitani T., Kasahara S., Yokota S., Kazama Y., et al. Geospace Exploration Project ERG. Earth, Planets and Space. 2018а, vol. 70, 155 p. DOI:https://doi.org/10.1186/s40623-018-0862-0.
17. Miyoshi Y., Hori T., Shoji M., Teramoto M., Chang T.F., Segawa T., Umemura N., Matsuda S., Kurita S. The ERG Science Center. Earth, Planets and Space. 2018b, vol. 70, 96. DOI:https://doi.org/10.1186/s40623-018-0867-8.
18. Mogilevsky M.M., Romancova T.V., Hanash Ja., Bu-rinskaja T.M., Shrajber R. About the source of auroral kilometric radiation. Pis’ma v ZhETF [J. Experimental and Theoretical Phys. Lett.]. 2007, vol. 86, iss. 11, pp. 819-821. (In Russian).
19. Mogilevsky M.M., Chugunin D.V., Chernyshov A.A., et al. Channeling of auroral kilometric radiation during geomagnetic disturbances. JETP Lett. 2022, vol. 115, pp. 602-607. DOI:https://doi.org/10.1134/S0021364022600707.
20. Nagai T., Mauk B., Santolik O., Kubota T., Sakanoi T. Special issue “Geospace exploration by the ERG mission”. Earth, Planets and Space. 2018, vol. 70, 155. DOI:https://doi.org/10.1186/s40623-018-0926-1.
21. Roederer J.G. Dynamics of Geomagnetically Trapped Radiation. Springer-Verlag Berlin Heidelberg, 1970, 166 p. (Physics and Chemistry in Space, vol. 2). DOI:https://doi.org/10.1007/978-3-642-49300-3.
22. Wu C.S. The cyclotron maser theory of AKR and Z-mode radiation. CNES Results of the ARCAD 3 Project and of Recent Programs in Magnetospheric and Ionospheric Physics. 1985, pp. 559-570.
23. Wu C.S., Lee L.C. A theory of the terrestrial kilometric radiation. Astrophys. J. 1979, vol. 230, pp. 621-626.
24. Xiao F., Tang J., Zhang S., Zhou Q., Liu S., He Y., et al. Asymmetric distributions of auroral kilometric radiation in Earth’s Northern and Southern hemispheres observed by the Arase satellite. Geophys. Res. Lett. 2022, vol. 49, no. 13, e2022GL099571. DOI:https://doi.org/10.1029/2022GL099571.
25. Zhao W., Liu S., Zhang S., Zhou Q., Yang C., He Y. Global occurrences of auroral kilometric radiation related to suprathermal electrons in radiation belts. Geophys. Res. Lett. 2019, vol. 46, no. 10, pp. 7230-7236. DOI:https://doi.org/10.1029/2019GL083944.
26. URL: https://ergsc.isee.nagoya-u.ac.jp/ (accessed September 12, 2023).