Пятьдесят лет исследования поведения интенсивности ГКЛ в периоды инверсии гелиосферного магнитного поля. I. Наблюдаемые эффекты
Рубрики: ОБЗОРЫ
Аннотация и ключевые слова
Аннотация (русский):
Впервые эффекты 22-летней цикличности солнечных магнитных полей в интенсивности галактических космических лучей (ГКЛ) были замечены группой ФИАН в 1973 г. и интерпретированы как проявления инверсии высокоширотного магнитного поля Солнца в свойствах гелиосферных магнитных полей. С тех пор эти эффекты исследуются уже в течение пятидесяти лет. Для периодов средней и низкой пятенной активности ситуация с гелиосферным магнитным полем (ГМП) понятна: гелиосфера состоит из двух униполярных «полушарий», разделенных волнистым глобальным гелиосферным токовым слоем и характеризующихся общей полярностью A (единичная величина со знаком радиальной компоненты поля в северном полушарии). Однако нет единого мнения, в чем заключается инверсия ГМП и какие явления в ГКЛ с ней связаны. В статье кратко формулируются общие представления о 22-летней цикличности в характеристиках Солнца, гелиосферы и ГКЛ и обсуждаются наблюдаемые эффекты в интенсивности ГКЛ, связываемые нами с инверсией ГМП. Модели этого явления, а также результаты расчетов интенсивности ГКЛ, использующих эти модели, будут обсуждаться в следующей статье.

Ключевые слова:
гелиосфера, гелиосферные магнитные поля (ГМП), инверсия ГМП, галактические космические лучи (ГКЛ), модуляция ГКЛ, долговременные вариации интенсивности ГКЛ, 22-летняя вариация интенсивности ГКЛ, ГКЛ в периоды инверсии ГМП
Список литературы

1. Крайнев М.Б. Влияние общего магнитного поля Солнца на 11-летний цикл и «аномальные» явления в галактических космических лучах. Известия АН СССР. Сер. физ. 1983. Т. 47, № 9. С. 1754-1760.

2. Крайнев М.Б. Проявления в гелиосфере и в интенсивности ГКЛ двух ветвей солнечной активности. Солнечно-земная физика. 2019. Т. 5, № 4. С. 12-25. DOI:https://doi.org/10.12737/szf-54201902.

3. Крайнев М.Б., Стожков Ю.И., Чарахчьян Т.Н. Галактические космические лучи в периоды инверсии общего магнитного поля Солнца. Известия АН СССР. Сер. физ. 1984. Т. 48, № 11. С. 2100-2102.

4. Крымский Г.Ф. Диффузионный механизм суточной вариации космических лучей. Геомагнетизм и аэрономия. 1964. Т. 4, С. 977-986.

5. Стожков Ю.И., Чарахчьян Т.Н. 11-летняя модуляция интенсивности космических лучей и гелиоширотное распределение пятен. Геомагнетизм и аэрономия. 1969. Т. 9, № 5. С. 803-808.

6. Стожков Ю.И., Свиржевский Н.С., Базилевская Г.А. и др. Потоки космических лучей в максимуме кривой поглощения в атмосфере и на границе атмосферы (1957-2007). Препринт ФИАН. 2007. № 14. 77 с.

7. Фишер Р.А. Статистические методы для исследователей. М.: Госстатиздат, 1958. 267 с.

8. Adriani O., Barbarino G.C., Bazilevskaya G.A., et al. (PAMELA collaboration). Time dependence of the proton flux measured by PAMELA during the 2006 July-2009 December solar minimum. Astrophys. J. 2013. Vol. 765, no. 2. P. 91. DOI:https://doi.org/10.1088/0004-637X/765/2/91.

9. Adriani O., Barbarino G.C., Bazilevskaya G.A., et al. (PAMELA collaboration). Unexpected cyclic behavior in cosmic-ray protons observed by PAMELA at 1 a.u. Astrophys. J. Lett. 2018. Vol. 852, no.2. P. L28. DOI:https://doi.org/10.3847/2041-8213/aaa403.

10. Aguilar M., et al. (AMS Collaboration). Observation of complex time structures in the cosmic-ray electron and positron fluxes with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2018. Vol. 121. 051102.

11. Aguilar M., et al. (AMS Collaboration). Periodicities in the daily proton fluxes from 2011 to 2019 measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV. Phys. Rev. Lett. 2021. Vol. 127. 271102. DOI:https://doi.org/10.1103/PhysRevLett.127.271102.

12. Ahluwalia H.S. Eleven year variation of cosmic ray intensity and solar polar field reversals. Proceedings of 16th International Cosmic Ray Conference. 1979. Vol. 12. P. 182-186.

13. Altschuler M.D., Newkirk G., Jr. Magnetic fields and the structure of the solar corona. I. Methods of calculating coronal fields. Solar Phys. 1969. Vol. 9. P. 131-149. DOI: 10.1007/ BF00145734.

14. Aslam O.P.M., Luo Xi, Potgieter M.S., et al. Unfolding drift effects for cosmic rays over the period of the Sun’s magnetic field reversal. Astrophys. J. 2023. Vol. 947, iss. 2. Id. 72. 17 p. DOI:https://doi.org/10.3847/1538-4357/acc24a.

15. Astaf’eva N.M., Bazilevskaya G.A., Krainev M.B., Sladkova A.I. Depression in cosmic ray variations during the inversions of the polar magnetic field of the Sun. Proc. 25th International Cosmic Ray Conference. 1997. Vol. 7. P. 337-340.

16. Babcock H.D. The Sun’s polar magnetic field. Astrophys. J. 1959. Vol. 130. P. 364-365. DOI:https://doi.org/10.1086/146726.

17. Babcock H.W. The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 1961. Vol. 133. P.572. DOI:https://doi.org/10.1086/147060.

18. Bazilevskaya G.A., Svirzhevskaya A.K. On the stratospheric measurements of cosmic rays. Space Sci. Rev. 1998. Vol. 85. P. 431-521.

19. Bazilevskaya G.A., Krainev M.B., Makhmutov V.S., et al. The relationship between the galactic cosmic ray intensity and the sunspot distribution. Adv. Space Res. 1995. Vol. 16, no. 9. P. (9)221-(9)225. DOI:https://doi.org/10.1016/0273-1177(95)00339-G.

20. Bazilevskaya G., Krainev M., Makhmutov V., et al. The Gnevyshev gap in cosmic ray physics. Proc. 16th European Cosmic Ray Symposium. 1998. P. 83-86.

21. Bazilevskaya G., Broomhall A.-M., Elsworth Y., Nakariakov V.M. A combined analysis of the observational aspects of the quasi-biennial oscillation in solar magnetic activity. Space Sci. Ser. ISSI. 2015. Vol. 53. P. 359. DOI:https://doi.org/10.1007/978-1-4939-2584-1_12.

22. Bieber J.W., Evenson P.A., Matthaeus W.H. The nuts and bolts of cosmic ray modulation. Proc. the 20th International Cosmic Ray Conference. 1987. Vol. 3. P. 175.

23. Burger J.J., Swanenburg B.N. Energy dependent time lag in the long-term modulation of cosmic rays. J. Geophys. Res. 1973. Vol. 78, iss. 1. P. 292. DOI:https://doi.org/10.1029/JA078i001p00292.

24. Burton M.E., Crooker N.U., Siscoe G.L., Smith E.J. A test of source-surface models predictions of heliospheric current sheet inclination. J. Geophys. Res. 1994. Vol. 99, iss. A1. P. 1-10. DOI:https://doi.org/10.1029/93JA02100.

25. Cane H.V., Wibberenz G., Richardson I.G. von Rosenvinge T.T. Cosmic ray modulation and the solar magnetic field. Geophys. Res. Lett. 1999. Vol. 26. P. 565-568. DOI: 10.1029/ 1999GL900032.

26. Charakhchyan A.N., Stozhkov Yu.I., Svirzhevsky N.S., Charakhchyan T.N. Anomalous effect in the 11-year galactic cosmic ray modulation. Proc. the 13th International Cosmic Ray Conference. 1973. Vol. 2. P. 1159-1164.

27. Charbonneau P. Dynamo models of the solar cycle. Living Reviews Solar Physics. 2010. Vol. 7. P. 3. DOI:https://doi.org/10.1007/s41116-020-00025-6.

28. Evenson P., Garcia-Munoz M., Meyer P., et al. A quantitative test of solar modulation theory: The proton, helium and electron spectra from 1965 through 1979. Astrophys. J. Lett. 1983. Vol. 275. P. L15. DOI:https://doi.org/10.1086/184162.

29. Forbush S.E. World-wide changes in cosmic-ray intensity. Reviews of Modern Physics. 1939. Vol. 11, iss. 3-4. P.168-172. DOI:https://doi.org/10.1103/RevModPhys.11.168.

30. Forbush S.E. World-wide cosmic-ray variations, 1937-1952. J. Geophys. Res. 1954. Vol. 59, iss. 4. P. 525-542. DOI:https://doi.org/10.1029/JZ059i004p00525.

31. Forbush S.E. Variation with a period of two solar cycles in the cosmic-ray diurnal anisotropy and the superposed variations correlated with magnetic activity. J. Geophys. Res. 1969. Vol. 74, iss. 14. P. 3451. DOI:https://doi.org/10.1029/JA074i014p03451.

32. Garcia-Munoz M., Meyer P., Pyle K.R., et al. The dependence of solar modulation on the sign of the cosmic ray particle charge. J. Geophys. Res. 1986. Vol. 91, no. A3. P. 2858-2866. DOI:https://doi.org/10.1029/JA091iA03p02858.

33. Gnevyshev M.N. On the 11-year cycle of solar activity. Solar Phys. 1967. Vol. 1. P. 107-120. DOI:https://doi.org/10.1007/BF00150306.

34. Hale G.E. On the probable existence of a magnetic field in sunspots. Astrophys. J. 1908. Vol. 28. P. 3015-343.

35. Hale G.E. Preliminary results of an attempt to detect the general magnetic field of the Sun. Astrophys. J. 1913. Vol. 38. P. 27-98.

36. Hale G.E., Ellerman F., Nicholson S.B., Joy A.H. The magnetic polarity of the sunspots. Astrophys. J. 1919. Vol. 49. P. 153-178.

37. Howard R. Studies of solar magnetic fields. I. The average field strength’s. Solar Phys. 1974. Vol. 38. P. 283-299. DOI:https://doi.org/10.1007/BF00155067.

38. Jokipii J.R., Levy E.H. Electric field effects on galactic cosmic rays at the heliospheric boundary. Proc. 16th International Cosmic Ray Conference. 1979. Vol. 3. P. 52-56.

39. Jokipii J.R., Thomas B. Effect of drift on the transport of cosmic rays. IV. Modulation by a wavy interplanetary current sheet. Astrophys. J. 1981. Vol. 243. P. 1115-1122. DOI: 10.1086/ 158675.

40. Jokipii J.R., Levy E.H., Hubbard W.B. Effects of particle drift on cosmic-ray transport. I. General properties, application to solar modulation. Astrophys. J. 1977. Vol. 213. P. 861-868. DOI:https://doi.org/10.1086/155218.

41. Krainev M.B. The solar corona expansion geometry and cosmic ray effects. IV. On the cosmic ray energy change due to the electric field. Proc. 16th International Cosmic Ray Conference. 1979. Vol. 3. P. 236-241.

42. Krainev M.B., Kalinin M.S. On the GCR intensity and the inversion of the heliospheric magnetic field during the periods of the high solar activity. Proceedings of 33rd International Cosmic Ray Conference. 2014, icrc2013-0317/1-4, ArXiv:1411.7532 [astro-ph.SR].

43. Krainev M.B., Stozhkov Yu.I., Charakhchyan T.N. On the energetic “hysteresis” in the galactic cosmic ray intensity. Proc. 18th International Cosmic Ray Conference. 1983a. Vol. 3. P. 23-26.

44. Krainev M.B., Stozhkov Yu.I., Charakhchyan T.N. On the “anomalous” phenomena in the galactic cosmic ray intensity in the periods of the inversion of general magnetic field of the Sun. Proc. 18th International Cosmic Ray Conference. 1983b. Vol. 3. P. 95-98.

45. Krainev M.B. Stozhkov Yu.I., Charakhchyan T.N. On the influence of the heliomagnetospheric periphery on the galactic cosmic rays. Proc. 19th International Cosmic Ray Conference. 1985. Vol. 4. P. 481-484.

46. Krainev M.B., Storini M., Bazilevskaya G.A., et al. The Gnevyshev gap effect in galactic cosmic rays. Proc. 26th International Cosmic Ray Conference. 1999. Vol. 7. P. 155-158.

47. Krainev M., Bazilevskaya G., Kalinin M., et al. GCR intensity during the sunspot maximum phase and the inversion of the heliospheric magnetic field. Proc. Science. 2015. PoS (ICRC2015) 081/1-8.

48. Lockwood J.A., Leznyak J.A., Webber W.R. Change in the eleven-year modulation at the time of the June 8, 1969, Forbush decrease. J. Geophys. Res. 1972. Vol. 77, iss. 25. P. 4839. DOI:https://doi.org/10.1029/JA077i025p04839.

49. Martucci M., Munini R., Boezio M., et al. (PAMELA collaboration). Proton fluxes measured by the PAMELA experiment from the minimum to the maximum solar activity for solar cycle 24. Astrophys. J. Lett. 2018. Vol. 854. P. L2. DOI:https://doi.org/10.3847/2041-8213/aaa9b2.

50. Nagashima K. Long term modulation of cosmic rays in helio-magnetosphere. Proc. 15th International Cosmic Ray Conference. 1977. Vol. 10. P. 380-396.

51. Parker E.N. Cosmic ray modulation by solar wind. Phys. Rev. 1958. Vol. 110. P. 1445. DOI:https://doi.org/10.1103/PhysRev.110.1445.

52. Parker E.N. Interplanetary dynamical processes. 1963. New York. Interscience Publishers.

53. Parker E.N. The passage of energetic charged particles through interplanetary space. Planetary and Space Sci. 1965. Vol. 13. P. 9-49. DOI:https://doi.org/10.1016/0032-0633(65)90131-5.

54. Potgieter M.S. Solar modulation of cosmic rays. Living Reviews. Solar Physics. 2013. Vol. 10. P. 3. DOI:https://doi.org/10.12942/lrsp-2013-3.

55. Potgieter M. S., Le Roux J.A. More on a possible modulation barrier in the outer heliosphere. Adv. Space Res. 1989. Vol. 91. P. 121. DOI:https://doi.org/10.1016/0273-1177(89)90318-9.

56. Schatten K.H., Wilcox J.M. Direction of the nearby galactic magnetic field inferred from a cosmic-ray diurnal anisotropy. J. Geophys. Res. 1969. Vol. 74, iss. 16. P. 4157. DOI: 10.1029/ JA074i016p04157.

57. Schatten K.H., Wilcox J.M., Ness F.N. A model of interplanetary and coronal magnetic fields. Solar Phys. 1969. Vol. 6. P. 442-455.

58. Sheeley N.R., Jr. Polar faculae during the interval 1906-1975. J. Geophys. Res. 1976. Vol. 81. P. 3462. DOI: 10.1029/ JA081i019p03462.

59. Sheeley N.R., Jr. A century of polar faculae variations. Astrophys. J. 2008. Vol. 680. P. 1553-1559. DOI:https://doi.org/10.1086/588251.

60. Shulz M. Interplanetary sector structure and the heliomagnetic equator. Astrophys. Space Sci. 1973. Vol. 24. P. 371. DOI:https://doi.org/10.1007/BF02637162.

61. Simpson J.A. The primary cosmic ray spectrum and the transition region between interplanetary and interstellar space. Proc. 8th International Cosmic Ray Conference. 1963. Vol. 2. P. 155.

62. Simpson J.A. Cosmic ray astrophysics at Chicago (1947-1960). Astrophys. Space Sci. Library. 1985. Vol. 118. P. 385. DOI:https://doi.org/10.1007/978-94-009-5434-2_36.

63. Simpson J.A. The cosmic ray nucleonic component: The invention and scientific uses of the neutron monitor, cosmic rays and Earth. Space Sci. Ser. ISSI. 2000. Vol. 10. P. 11-32. DOI:https://doi.org/10.1007/978-94-017-1187-6_2.

64. Smith E.J. The heliospheric current sheet. J. Geophys. Res. 2001. Vol. 106, iss. A8. P. 15819-15832. DOI:https://doi.org/10.1029/2000 JA000120.

65. Smith E.J. Solar cycle evolution of the heliospheric magnetic field: The Ulysses legacy. J. Atmos. Solar-Terr. Phys. 2011. Vol. 73, iss. 2-3. P. 277-289. DOI:https://doi.org/10.1016/j.jastp.2010.03.019.

66. Storini M., Bazilevskaya G.A., Fluckiger E.O., et al. The Gnevyshev gap: A review for space weather. Adv. Space Res. 2003. Vol. 31, no. 4. P. 895-900. DOI:https://doi.org/10.1016/S0273-1177(02)00789-5.

67. Stozhkov Yu.I., Charakhchyan T.N. On the role of the heliolatitudes of sunspots in the 11-year galactic cosmic ray modulation. Acta Phys. Acad. Sci. Hungaricae. 1970. Vol. 29. Suppl. 2. P. 301-304.

68. Stozhkov Yu.I., Svirzhevsky N.S., Bazilevskaya G.A., et al. Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 2009. Vol. 44. P. 1124-1137. DOI:https://doi.org/10.1016/j.asr.2008.10.038.

69. Stozhkov Yu.I., Makhmutov V.S., Svirzhevsky N.S. About cosmic ray modulation in the heliosphere. Universe. 2022. Vol. 8, iss.11. P. 558. DOI:https://doi.org/10.3390/universe8110558.

70. Svirzhevskaya A.K., Stozhkov Yu.I., Charakhchyan T.N. Anomalous effect in the spectrum of cosmic ray variations in 1971-1973. Proc. 14th International Cosmic Ray Conference. 1975. Vol. 3. P. 985-989.

71. Vecchio A., Laurenza M., Carbone V., Storini M. Quasi-biennial modulation of solar neutrino flux and solar and galactic cosmic rays by solar cyclic activity. Astrophys. J. Lett. 2010. Vol. 709. P. L1-L5. DOI:https://doi.org/10.1088/2041-8205/709/1/L1.

72. Zhao X., Hoeksema J.T. A coronal magnetic field model with horizontal volume and sheet currents. Solar Phys. 1994. Vol. 151. P. 91-104. DOI:https://doi.org/10.1007/BF00654084.

73. URL: ftp://ftp.swpc.noaa.gov/pub/forecasts/SRS (дата обращения 14 октября 2023 г.).

74. URL: http://wso.stanford.edu (дата обращения 14 октября 2023 г.).

75. URL: https://solarscience.msfc.nasa.gov (дата обращения 14 октября 2023 г.).

76. URL: ftp://omniweb.gsfc.nasa.gov/pub/data/omni/low_res_omni (дата обращения 14 октября 2023 г.).

77. URL: https://sites.lebedev.ru/en/DNS_FIAN (дата обращения 14 октября 2023 г.).

78. URL: http://www.nmdb.eu (дата обращения 14 октября 2023 г.).

Войти или Создать
* Забыли пароль?