ПАРАМЕТРЫ СОЛНЕЧНОГО ВЕТРА НА ФАЗЕ РОСТА 25-ГО СОЛНЕЧНОГО ЦИКЛА: СХОДСТВА И РАЗЛИЧИЯ С 23-М И 24-М СОЛНЕЧНЫМИ ЦИКЛАМИ
Аннотация и ключевые слова
Аннотация (русский):
Солнечная активность и параметры солнечного ветра существенно снизились в 23–24-м солнечных циклах (СЦ) по сравнению с СЦ 21–22. В данной работе мы анализируем измерения солнечного ветра на фазе роста СЦ 25 и сравниваем их с аналогичными данными в предыдущих циклах. Для этого данные базы OMNI за 1976–2022 гг. были селектированы как по фазам 11-летних солнечных циклов, так и по крупномасштабным типам солнечного ветра (по каталогу [http://www.iki.rssi.ru/pub/omni]) и мы рассчитали средние значения параметров плазмы и магнитного поля для сформированных наборов данных. Полученные результаты свидетельствуют в пользу гипотезы о том, что продолжение этого цикла будет аналогично соответствующим фазам предыдущего цикла 24, т. е. СЦ 25 будет слабее, чем СЦ 21 и 22.

Ключевые слова:
солнечный ветер, солнечный цикл
Список литературы

1. Bendat J.S., Piersol A.G. Measurement and Analysis of Random Data. New York: Wiley-Interscience, 1971. P. 139-258.

2. Biswas A., Karak B.B., Usoskin I., Weisshaar E. Long-term modulation of solar cycles. Space Sci Rev. 2023. Vol. 219, 19. DOI:https://doi.org/10.1007/s11214-023-00968-w.

3. Burlaga L.F., Lazarus A.J. Lognormal distributions and spectra of solar wind plasma fluctuations: Wind 1995-1998. J. Geophys. Res. 2000. Vol. 105, iss. A2. Р. 2357-2364. DOI:https://doi.org/10.1029/1999ja900442.

4. Dmitriev A.V., Suvorova A.V., Veselovsky I.S. Statistical characteristics of the heliospheric plasma and magnetic field at the Earth's orbit during four solar cycles 20-23. Handbook on Solar Wind: Effects, Dynamics and Interactions. New York: Nova Science Publishers, 2009. P. 81-144. EDN: https://elibrary.ru/XMCKZS

5. Du Z.L. The solar cycle: predicting the maximum amplitude of the smoothed highest 3-hourly aa index in 3 d for cycle 25 based on a similar-cycle method. Astrophys. Space Sci. 2023. Vol. 368, 11. DOI:https://doi.org/10.1007/s10509-023-04167-5.

6. Feynman J., Ruzmaikin A. The Sun’s strange behavior: Maunder minimum or Gleissberg cycle? Solar Phys. 2011. Vol. 272. P. 351-363. DOI:https://doi.org/10.1007/s11207-011-9828-0. EDN: https://elibrary.ru/PGMKOH

7. Chowdhury P., Sarp V., Kilcik A., et al. A non-linear approach to predicting the amplitude and timing of the sunspot area in cycle 25. Monthly Notices of the Royal Astronomical Society. 2022. Vol. 513, iss. 3. P. 4152-4158. DOI: 10.1093/ mnras/stac1162. DOI: https://doi.org/10.1093/mnras/stac1162; EDN: https://elibrary.ru/RHCCFM

8. Coban G.C., Raheem A.-u., Cavus H., Asghari-Targhi M. Can solar cycle 25 be a new Dalton minimum? Solar Phys. 2021. Vol. 296, 156. DOI:https://doi.org/10.1007/s11207-021-01906-1. EDN: https://elibrary.ru/SZPMEX

9. Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999. Vol. 88. P. 529-562. DOI:https://doi.org/10.1023/A:1005160129098.

10. Gopalswamy N., Yashiro S., Xie H., et al. Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res.: Space Phys. 2015. Vol. 120, iss. 11. P. 9221-9245. DOI:https://doi.org/10.1002/2015JA021446. EDN: https://elibrary.ru/WRIHBJ

11. Gringauz K.I. Some results of experiments in interplanetary space by means of charged particle traps on Soviet space probes. Proceedings of the Second International Space Science Symposium. Florence, Italy, 10-14 April 1961. P. 339-553.

12. Hundhausen A.J. Coronal Expansion and Solar Wind; Berlin; Heidelberg: Springer-Verlag, 1972. XII, 238 p. DOI: 10.1007/ 978-3-642-65414-5.

13. Javaraiah J. Will solar cycles 25 and 26 be weaker than cycle 24? Solar Phys. 2017. Vol. 292, 172. DOI: 10.1007 /s11207-017-1197-x. DOI: https://doi.org/10.1007/s11207-017-1197-x; EDN: https://elibrary.ru/YKAMZI

14. Javaraiah J. Prediction for the amplitude and second maximum of solar cycle 25 and a comparison of the predictions based on strength of polar magnetic field and low-latitude sunspot area. Monthly Notices of the Royal Astronomical Society. 2023. Vol. 520, iss. 4. P. 5586-5599. DOI:https://doi.org/10.1093/mnras/stad479.

15. King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res.: Space Phys. 2005. Vol. 110, A02209. DOI:https://doi.org/10.1029/2004JA010649.

16. Lamy P., Gilardy H. The state of the white-light corona over the minimum and ascending phases of solar cycle 25 - comparison with past cycles. Solar Phys. 2022. Vol. 297, 140. DOI:https://doi.org/10.1007/s11207-022-02057-7. EDN: https://elibrary.ru/SVHBHU

17. McComas D.J., Angold N., Elliott H.A., et al. Weakest solar wind of the space age and the current “Mini” solar maximum. Astrophys. J. Lett. 2013. Vol. 779, 2. DOI:https://doi.org/10.1088/0004-637X/779/1/2. EDN: https://elibrary.ru/SPCVJT

18. Mursula K., Qvick T., Holappa L., Asikainen T. Magnetic storms during the space age: Occurrence and relation to varying solar activity. J. Geophys. Res.: Space Phys. 2022. Vol. 127, iss. 12, e2022JA030830. DOI:https://doi.org/10.1029/2022JA030830. EDN: https://elibrary.ru/CDACST

19. Nagovitsyn Y.A., Ivanov V.G. Solar cycle pairing and prediction of cycle 25. Solar Phys. 2023. Vol. 298, 37. DOI:https://doi.org/10.1007/s11207-023-02121-w.

20. Neugebauer M., Snyder C.W. The mission of Mariner 2: Planetary observation, solar plasma experiment. Science. 1962. Vol. 138. P. 1095-1097.

21. Peguero J.C., Carrasco V.M.S. A critical comment on “Can Solar Cycle 25 Be a New Dalton Minimum?”. Solar Phys. 2023. Vol. 298, 48. DOI:https://doi.org/10.1007/s11207-023-02140-7.

22. Petrovay K. Solar cycle prediction. Living Reviews in Solar Physics. 2020. DOI:https://doi.org/10.1007/s41116-020-0022-z. EDN: https://elibrary.ru/SOAACP

23. Prasad A., Roy S., Sarkar A., et al. An Improved Prediction of Solar Cycle 25 Using Deep Learning Based Neural Network. Solar Phys. 2023. Vol. 298, 50. DOI:https://doi.org/10.1007/s11207-023-02129-2.

24. Schwenn R. Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 2006. Vol. 124. P. 51-76. DOI:https://doi.org/10.1007/s11214-006-9099-5. EDN: https://elibrary.ru/MFHMVR

25. Schwenn R. Solar wind sources and their variations over the solar cycle. Solar Dynamics and Its Effects on the Heliosphere and Earth. New York: Springer, 2007. P. 51-76. (Space Sciences Series of ISSI. Vol. 22). DOI:https://doi.org/10.1007/978-0-387-69532-7_5.

26. Temmer M. Space weather: The solar perspective. Living Rev. Solar Phys. 2021. Vol. 18, 4. DOI:https://doi.org/10.1007/s41116-021-00030-3. EDN: https://elibrary.ru/TJJRGQ

27. Yermolaev Yu.I., Yermolaev M.Yu., Zastenker G.N., et al. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: F review. Planetary and Space Science. 2005. Vol. 53, iss. 1-3. P. 189-196. DOI:https://doi.org/10.1016/j.pss. 2004.09.044. DOI: https://doi.org/10.1016/j.pss.2004.09.044; EDN: https://elibrary.ru/LIZCGR

28. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Catalog of large-scale solar wind phenomena during 1976-2000. Cosm. Res. 2009. Vol. 47, no. 2. Р. 81-94.

29. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., et al. Drop of solar wind at the end of the 20th century. J. Geophys. Res.: Space Phys. 2021a. Vol. 126, e2021JA029618. DOI: 10.1029/ 2021JA029618. DOI: https://doi.org/10.1029/2021JA029618; EDN: https://elibrary.ru/LPYEWW

30. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Y. Decrease in solar wind parameters after a minimum of 22-23 solar cycles. Proceedings of the Thirteenth Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”. Primorsko, Bulgaria, 13-17 September 2021. 2021b. Vol. 13. P. 117-121.

31. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Y. Peculiarities of the heliospheric state and the solar-wind/magnetosphere coupling in the era of weakened solar activity. Universe. 2022a. Vol. 8, 495. DOI:https://doi.org/10.3390/universe8100495. EDN: https://elibrary.ru/FHOHQL

32. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., et al. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 5. Influence of the solar activity decrease. Universe. 2022b. Vol. 8, 472. DOI: 10.3390/ universe8090472. DOI: https://doi.org/10.3390/universe8090472; EDN: https://elibrary.ru/ZVBBUZ

33. Yermolaev Yu.I., Lodkina I.G., Khokhlachev A.A. Will solar cycle 25 be similar to cycle 24 according to solar wind observations? 15th Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”. 5-9 June 2023, Bulgaria. 2023. DOI:https://doi.org/10.13140/RG.2.2.28430.54082.

34. Zharkova V., Vasilieva I., Shepherd S., Popova E. Periodicities in solar activity, solar radiation and their links with terrestrial environment. Natural Science. 2023. Vol. 15. P. 111-147. DOI:https://doi.org/10.4236/ns.2023.153010.

35. Zolotova N.V., Ponyavin D.I. Is the new Grand minimum in progress? J. Geophys. Res.: Space Phys. 2014. Vol. 119. P. 3281-3285. DOI:https://doi.org/10.1002/2013JA019751. EDN: https://elibrary.ru/UGMSWL

36. URL: http://www.iki.rssi.ru/pub/omni (дата обращения 26 июня 2023 г.).

37. URL: https://spdf.gsfc.nasa.gov/pub/data/omni/low_res_omni (дата обращения 26 июня 2023 г.).

Войти или Создать
* Забыли пароль?