Москва, Россия
с 01.01.2006 по 01.01.2021
Москва, Россия
Москва, Россия
Москва, Россия
Москва, Россия
с 01.01.2014 по настоящее время
Москва, Россия
Москва, г. Москва и Московская область, Россия
Москва, Россия
с 01.01.2019 по 01.01.2021
Москва, Россия
Солнечная активность и параметры солнечного ветра существенно снизились в 23–24-м солнечных циклах (СЦ) по сравнению с СЦ 21–22. В данной работе мы анализируем измерения солнечного ветра на фазе роста СЦ 25 и сравниваем их с аналогичными данными в предыдущих циклах. Для этого данные базы OMNI за 1976–2022 гг. были селектированы как по фазам 11-летних солнечных циклов, так и по крупномасштабным типам солнечного ветра (по каталогу [http://www.iki.rssi.ru/pub/omni]) и мы рассчитали средние значения параметров плазмы и магнитного поля для сформированных наборов данных. Полученные результаты свидетельствуют в пользу гипотезы о том, что продолжение этого цикла будет аналогично соответствующим фазам предыдущего цикла 24, т. е. СЦ 25 будет слабее, чем СЦ 21 и 22.
солнечный ветер, солнечный цикл
1. Bendat J.S., Piersol A.G. Measurement and Analysis of Random Data. New York: Wiley-Interscience, 1971. P. 139-258.
2. Biswas A., Karak B.B., Usoskin I., Weisshaar E. Long-term modulation of solar cycles. Space Sci Rev. 2023. Vol. 219, 19. DOI:https://doi.org/10.1007/s11214-023-00968-w.
3. Burlaga L.F., Lazarus A.J. Lognormal distributions and spectra of solar wind plasma fluctuations: Wind 1995-1998. J. Geophys. Res. 2000. Vol. 105, iss. A2. Р. 2357-2364. DOI:https://doi.org/10.1029/1999ja900442.
4. Dmitriev A.V., Suvorova A.V., Veselovsky I.S. Statistical characteristics of the heliospheric plasma and magnetic field at the Earth's orbit during four solar cycles 20-23. Handbook on Solar Wind: Effects, Dynamics and Interactions. New York: Nova Science Publishers, 2009. P. 81-144.
5. Du Z.L. The solar cycle: predicting the maximum amplitude of the smoothed highest 3-hourly aa index in 3 d for cycle 25 based on a similar-cycle method. Astrophys. Space Sci. 2023. Vol. 368, 11. DOI:https://doi.org/10.1007/s10509-023-04167-5.
6. Feynman J., Ruzmaikin A. The Sun’s strange behavior: Maunder minimum or Gleissberg cycle? Solar Phys. 2011. Vol. 272. P. 351-363. DOI:https://doi.org/10.1007/s11207-011-9828-0.
7. Chowdhury P., Sarp V., Kilcik A., et al. A non-linear approach to predicting the amplitude and timing of the sunspot area in cycle 25. Monthly Notices of the Royal Astronomical Society. 2022. Vol. 513, iss. 3. P. 4152-4158. DOI: 10.1093/ mnras/stac1162.
8. Coban G.C., Raheem A.-u., Cavus H., Asghari-Targhi M. Can solar cycle 25 be a new Dalton minimum? Solar Phys. 2021. Vol. 296, 156. DOI:https://doi.org/10.1007/s11207-021-01906-1.
9. Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999. Vol. 88. P. 529-562. DOI:https://doi.org/10.1023/A:1005160129098.
10. Gopalswamy N., Yashiro S., Xie H., et al. Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res.: Space Phys. 2015. Vol. 120, iss. 11. P. 9221-9245. DOI:https://doi.org/10.1002/2015JA021446.
11. Gringauz K.I. Some results of experiments in interplanetary space by means of charged particle traps on Soviet space probes. Proceedings of the Second International Space Science Symposium. Florence, Italy, 10-14 April 1961. P. 339-553.
12. Hundhausen A.J. Coronal Expansion and Solar Wind; Berlin; Heidelberg: Springer-Verlag, 1972. XII, 238 p. DOI: 10.1007/ 978-3-642-65414-5.
13. Javaraiah J. Will solar cycles 25 and 26 be weaker than cycle 24? Solar Phys. 2017. Vol. 292, 172. DOI: 10.1007 /s11207-017-1197-x.
14. Javaraiah J. Prediction for the amplitude and second maximum of solar cycle 25 and a comparison of the predictions based on strength of polar magnetic field and low-latitude sunspot area. Monthly Notices of the Royal Astronomical Society. 2023. Vol. 520, iss. 4. P. 5586-5599. DOI:https://doi.org/10.1093/mnras/stad479.
15. King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res.: Space Phys. 2005. Vol. 110, A02209. DOI:https://doi.org/10.1029/2004JA010649.
16. Lamy P., Gilardy H. The state of the white-light corona over the minimum and ascending phases of solar cycle 25 - comparison with past cycles. Solar Phys. 2022. Vol. 297, 140. DOI:https://doi.org/10.1007/s11207-022-02057-7.
17. McComas D.J., Angold N., Elliott H.A., et al. Weakest solar wind of the space age and the current “Mini” solar maximum. Astrophys. J. Lett. 2013. Vol. 779, 2. DOI:https://doi.org/10.1088/0004-637X/779/1/2.
18. Mursula K., Qvick T., Holappa L., Asikainen T. Magnetic storms during the space age: Occurrence and relation to varying solar activity. J. Geophys. Res.: Space Phys. 2022. Vol. 127, iss. 12, e2022JA030830. DOI:https://doi.org/10.1029/2022JA030830.
19. Nagovitsyn Y.A., Ivanov V.G. Solar cycle pairing and prediction of cycle 25. Solar Phys. 2023. Vol. 298, 37. DOI:https://doi.org/10.1007/s11207-023-02121-w.
20. Neugebauer M., Snyder C.W. The mission of Mariner 2: Planetary observation, solar plasma experiment. Science. 1962. Vol. 138. P. 1095-1097.
21. Peguero J.C., Carrasco V.M.S. A critical comment on “Can Solar Cycle 25 Be a New Dalton Minimum?”. Solar Phys. 2023. Vol. 298, 48. DOI:https://doi.org/10.1007/s11207-023-02140-7.
22. Petrovay K. Solar cycle prediction. Living Reviews in Solar Physics. 2020. DOI:https://doi.org/10.1007/s41116-020-0022-z.
23. Prasad A., Roy S., Sarkar A., et al. An Improved Prediction of Solar Cycle 25 Using Deep Learning Based Neural Network. Solar Phys. 2023. Vol. 298, 50. DOI:https://doi.org/10.1007/s11207-023-02129-2.
24. Schwenn R. Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 2006. Vol. 124. P. 51-76. DOI:https://doi.org/10.1007/s11214-006-9099-5.
25. Schwenn R. Solar wind sources and their variations over the solar cycle. Solar Dynamics and Its Effects on the Heliosphere and Earth. New York: Springer, 2007. P. 51-76. (Space Sciences Series of ISSI. Vol. 22). DOI:https://doi.org/10.1007/978-0-387-69532-7_5.
26. Temmer M. Space weather: The solar perspective. Living Rev. Solar Phys. 2021. Vol. 18, 4. DOI:https://doi.org/10.1007/s41116-021-00030-3.
27. Yermolaev Yu.I., Yermolaev M.Yu., Zastenker G.N., et al. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: F review. Planetary and Space Science. 2005. Vol. 53, iss. 1-3. P. 189-196. DOI:https://doi.org/10.1016/j.pss. 2004.09.044.
28. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Catalog of large-scale solar wind phenomena during 1976-2000. Cosm. Res. 2009. Vol. 47, no. 2. Р. 81-94.
29. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., et al. Drop of solar wind at the end of the 20th century. J. Geophys. Res.: Space Phys. 2021a. Vol. 126, e2021JA029618. DOI: 10.1029/ 2021JA029618.
30. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Y. Decrease in solar wind parameters after a minimum of 22-23 solar cycles. Proceedings of the Thirteenth Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”. Primorsko, Bulgaria, 13-17 September 2021. 2021b. Vol. 13. P. 117-121.
31. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Y. Peculiarities of the heliospheric state and the solar-wind/magnetosphere coupling in the era of weakened solar activity. Universe. 2022a. Vol. 8, 495. DOI:https://doi.org/10.3390/universe8100495.
32. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., et al. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 5. Influence of the solar activity decrease. Universe. 2022b. Vol. 8, 472. DOI: 10.3390/ universe8090472.
33. Yermolaev Yu.I., Lodkina I.G., Khokhlachev A.A. Will solar cycle 25 be similar to cycle 24 according to solar wind observations? 15th Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”. 5-9 June 2023, Bulgaria. 2023. DOI:https://doi.org/10.13140/RG.2.2.28430.54082.
34. Zharkova V., Vasilieva I., Shepherd S., Popova E. Periodicities in solar activity, solar radiation and their links with terrestrial environment. Natural Science. 2023. Vol. 15. P. 111-147. DOI:https://doi.org/10.4236/ns.2023.153010.
35. Zolotova N.V., Ponyavin D.I. Is the new Grand minimum in progress? J. Geophys. Res.: Space Phys. 2014. Vol. 119. P. 3281-3285. DOI:https://doi.org/10.1002/2013JA019751.
36. URL: http://www.iki.rssi.ru/pub/omni (дата обращения 26 июня 2023 г.).
37. URL: https://spdf.gsfc.nasa.gov/pub/data/omni/low_res_omni (дата обращения 26 июня 2023 г.).