сотрудник с 01.01.2015 по настоящее время
Москва, Россия
Институт физики Земли им. О.Ю. Шмидта РАН
Москва, Россия
Институт физики Земли им. О.Ю. Шмидта РАН
Геофизический Центр РАН
Москва, Россия
Москва, Россия
Институт физики Земли им. О. Ю. Шмидта РАН
Москва, Россия
Москва, Россия
УДК 550.38 Земной магнетизм. Геомагнетизм
In this paper, we describe the TeslaSwarm online system [http://aleph.gcras.ru/teslaswarm] for visualizing field-aligned currents in the upper ionosphere, using data from Swarm low-orbit satellites. The system provides researchers with a simple and convenient tool for event selection and detailed analysis of currents and electromagnetic fields in the upper ionosphere. The system user can select satellite passages over a given region, visualize the geomagnetic field structure and field-aligned currents, compare the pattern of field-aligned currents with the auroral particle precipitation map, using the OVATION-Prime model, and save the selected parameters in a file in text format. We demonstrate advantages of the developed system over its foreign analogues. In practice, the collection and pre-processing of raw data for experiments make up about 80 % of all work with data. The proposed online system largely saves the user from the most time-consuming work of choosing the required satellite passage segments and calculating the characteristics of interest from raw measurements.
field-aligned electric currents, visualization of field-aligned currents, Swarm satellite data, geomagnetic field structure
1. Agayan S., Bogoutdinov S., Soloviev A., Sidorov R. The study of time series using the DMA methods and geophysical applications. Data Sci. J. 2016, vol. 16, pp. 1-21. DOI: Data Sci. J. 2016. Vol. 16. P. 1-21, DOI:https://doi.org/10.5334/dsj-2016-016.
2. Alken P., Thébault E., BegganC. D., Amit H., Aubert J., Baerenzung J., et al. International Geomagnetic Reference Field: the thirteenth generation. Earth, Planets and Space. 2021, vol. 73 (1), no 49. DOI: 10.1186/ s40623-020-01288-x.
3. Dunlop M.W., Yang Y.Y., Yang J. Y., Lühr H., Shen C., Olsen N., et al. Multi-spacecraft current estimates at Swarm. J. Geophys. Res. 2015, vol. 120, iss.10, pp. 8307-8316.
4. Finlay C.C., Kloss C., Olsen N., Hammer M. Toeffner-Clausen L., Grayver A., et al. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planets and Space. 2020, vol. 72. DOI:https://doi.org/10.1186/s40623-020-01252-9.
5. Forsyth C., Rae I.J., Mann I.R., Pakhotin I.P. Identifying intervals of temporally invariant field-aligned currents from Swarm: Assessing the validity of single-spacecraft methods. J. Geophys. Res.: Space Phys. 2017, vol. 122. DOI:https://doi.org/10.1002/2016JA023708.
6. Friis-Christensen E., Lühr H., Hulot G. Swarm: A constellation to study the Earth’s magnetic field. Earth, Planets and Space. 2006, vol. 58, pp. 351-358.
7. Gjerloev J. The SuperMAG data processing technique. J. Geophys. Res. 2012, no. 117, pp. A09213.
8. Gvishiani A., Soloviev A., Krasnoperov R., Lukianova R. Automated hardware and software system for monitoring the Earth’s magnetic environment. Data Sci. J. 2016, vol. 15, p.18. DOI:https://doi.org/10.5334/dsj-2016-018.
9. Kervalishvili G., Park J. Swarm L2 FAC-single product description. Swarm Expert Support Laboratories (5). 2017. https://cloud.gcras.ru/d/s/vsgRgEVWNkjvy7GDefXCxVkrT2Byy1EW/8FO5KX4RT-szECaxtrtgLOd5pXAvJzZt-_rvgPhG-3wo.
10. Lühr H., Park J., Gjerloev J.W., Rauberg J., Michaelis I., Merayo M.G., Brauer P. Field-aligned currents’ scale analysis performed with the Swarm constellation. Geophys. Res. Lett. 2015, vol. 42, pp. 1-8. DOI:https://doi.org/10.1002/2014GL062453.
11. Lühr H., Ritter P., Kervalishvili G., Rauberg J. Applying the dual-spacecraft approach to the Swarm constellation for deriving radial current density. Ionospheric Multi-Spacecraft Analysis Tools. ISSI Scientific Report Series, Springer, Cham. 2020, Vol. 17. DOI:https://doi.org/10.1007/978-3-030-26732-2_6.
12. Machol J.L., Green J.C., Redmon R.J., Viereck R.A., Newell R.T. Evaluation of OVATION Prime as a forecast model for visible aurora, Space Weather. 2012, no. 10, S03005. DOI: 10.1029/ 2011SW000746.
13. Neubert T., Christiansen F. Small-scale, field-aligned currents at the top-side ionosphere. Geophys. Res. Lett. 2003, vol. 30, p. 2010. DOI:https://doi.org/10.1029/2003GL017808.
14. Newell P.T., Liou K., Zhang Y., Sotirelis T., Paxton L.J., Mitchell E.J. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels. Space Weather. 2014, vol. 12, pp. 368-379. DOI:https://doi.org/10.1002/2014SW001056.
15. Papitashvili V. O., Christiansen F., Neubert T. A new model of field-aligned currents derived from high-precision satellite magnetic field data. Geophys. Res. Lett. 2002, vol. 29, p. 1683.
16. Park J., Lühr H., Knudsen D.J., Burchill J.K., Kwak. Y.-S. Alfvén waves in the auroral region, their Poynting flux, and reflection coefficient as estimated from Swarm observations, J. Geophys. Res. 2017, vol. 122, pp. 2345-2360. DOI:https://doi.org/10.1002/2016JA023527.
17. Pilipenko V.A. Space weather impact on ground-based technological systems. Solnechno-zemnaya fizika [Solar-terrestrial physics], 2021, vol. 7, no. 3, pp. 73-110. (In Russian). DOI:https://doi.org/10.12737/szf-73202106.
18. Pilipenko V., Heilig B. ULF waves and transients in the topside ionosphere, in: “Low-frequency Waves in Space Plasmas”. Geophysical Monograph. Ser. 2016. vol. 216, pp. 15-29. Wiley/AGU DOI:https://doi.org/10.1002/9781119055006.
19. Ritter P., Lühr H., Rauberg J. Determining field-aligned currents with the Swarm constellation mission. Earth Planets and Space. 2013, vol. 65, iss. 11, pp. 1285-1294.
20. Russell C.T., Snare R.C., Means J.D., Pierce D., Dearborn D., Larson M., et al. The GGS/POLAR magnetic fields investigation. Space Sci, 1995, vol. 71, pp. 563-582.
21. Swarm Level 2 Processing System Consortium, Product specification for L2 Products and Auxiliary Products, Doc.no: SW-DS-DTU-GS-0001. 2019, p. 100.
22. Tsyganenko N.A. A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 1989, vol. 37, pp. 5-20. DOI:https://doi.org/10.1016/0032-0633(89)90066-4.
23. Tøffner-Clausen L. Swarm level 1b product definition. SW-RS-DSC-SY-0007. 2021, iss. 5.26. [Available at https://cloud.gcras.ru/d/s/vsgRgEVWNkjvy7GDefXCxVkrT2Byy1EW/8FO5KX4RT-szECaxtrtgLOd5pXAvJzZt-_rvgPhG-3wo..
24. Vobobev A.V., Soloviev A.A., Pilipenko V.A., Vorobeva G.R. Interactive computer model for aurora forecast and analysis. Solar-Terr. Phys. 2022, vol. 8, no. 2, pp. 84-90. DOI:https://doi.org/10.12737/stp-82202213.
25. Wu J., Knudsen D.J., Gillies D.M., Donovan E.F., Burchill J.K. Swarm observation of field-aligned currents associated with multiple auroral arc systems. J. Geophys. Res. 2017, vol. 122. DOI:https://doi.org/10.1002/2017JA024439.
26. Zanetti L.J., Anderson B.J., Potemra T.A., Clemmon J. H., Wilmingham J.D., Sharbe J.R. Identification of auroral oval boundaries from in situ magnetic field measurements. J. Geophys. Res. 1998, vol. 103, p. 4187.
27. URL: http://aleph.gcras.ru/teslaswarm (accessed November 3, 2023).
28. URL: http://ckp.gcras.ru (accessed November 3, 2023).
29. URL: https://pypi.org/project/PyMySQL/ (accessed November 3, 2023
30. URL: ftp://swarm-diss.eo.esa.int (accessed November 3, 2023).
31. URL: https://ccmc.gsfc.nasa.gov/models/Ovation-Prime~2.3 (accessed November 3, 2023).
32. URL: https://supermag.jhuapl.edu (accessed November 3, 2023).
33. URL: https://pypi.org/project/igrfu (accessed November 3, 2023).
34. URL: https://pypi.org/project/chaosmagpy (accessed November 3, 2023).
35. URL: https://omniweb.gsfc.nasa.gov/ (accessed November 3, 2023).
36. URL: https://vires.services/ (accessed November 3, 2023).
37. URL: https://vre.vires.services (accessed November 3, 2023).
38. URL: https://github.com/hapi-server (accessed November 3, 2023).
39. URL: http://www.intermagnet.org (accessed November 3, 2023).
40. URL: http://geomag.gcras.ru (accessed November 3, 2023).
41. URL: https://github.com/lkilcommons/OvationPyme (accessed November 3, 2023).