Апатиты, Россия
Апатиты, Россия
Апатиты, Россия
Апатиты, Россия
Апатиты, Мурманская область, Россия
We report the measurement results of differential spectra of electromagnetic radiation in the range 0.1–4 MeV, which occurs in the atmosphere as a component of secondary cosmic rays. Spectral monitoring was performed using a spectrometer based on the Nai (TL) crystal in 2022–2023. The main purpose of the measurements was to determine spectral characteristics of the electromagnetic radiation during increase events, when the electromagnetic radiation flux from the atmosphere rises by tens of percent with respect to the background level. From a thorough analysis of the spectra of many dozens of events, we have drawn a conclusion that although the lines of natural radionuclides are present on the spectra and contribute their share, their total contribution to the increase events is ~0.1 of the total energy supplied during an increase. We unambiguously conclude that the effect of increasing electromagnetic radiation during precipitation is not due to the presence of radionuclides in precipitation.
secondary cosmic rays, electromagnetic radiation, scintillation detector, differential spectrum, radionuclides, increase
1. Abramov A.I., Kazanskii Yu.A., Matusevich E.S. Osnovy eksperimental’nykh metodov yadernoi fiziki [Fundamentals of Experimental Methods of Nuclear Physics]. Moscow, Jenergoizdat Publ., 1985, 267 p. (In Russian).
2. Alexeenko V.V., Khaerdinov N.S., Lidvansky A.S., Petkov V.B. Transient variations of secondary cosmic rays due to atmospheric electric field and evidence for pre-lightning particle acceleration. Phys. Lett. A. 2002a, vol. 301, iss. 3-4, pp. 299-306. DOI:https://doi.org/10.1016/S0375-9601(02)00981-7.
3. Alekseenko V.V., Lidvansky A.S., Petkov V.B., Haerdinov N.S. About different types of increase in space rays before lightning categories. Izvestiya RAN. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics]. 2002b, vol. 66, no 11, pp. 1581-1584. (In Russian).
4. Balabin V.V., Germanenko A.V., Gvozdevsky B.B., Vashenyuk E.V. Variations in the natural X-ray background in the polar atmosphere. Geomagnetism and Aeronomy. 2014, vol. 54, no. 3, pp. 347-356. DOI:https://doi.org/10.1134/S0016793214020029.
5. Balabin Y.V., Germanenko A.V., Mikhalko E.A., Maurchev E.A., Larchenko A.V. Observing variations in secondary cosmic ray fluxes during a sea expedition in the Arctic Ocean. Bulletin of the Russian Academy of Sciences: Physics. 2022, vol. 86, no. 3, pp 285-289. DOI:https://doi.org/10.3103/S1062873822030030.
6. de Mendonca R.R.S., Raulin J.-P., Bertoni F.C.P., Echer E., Makhmutov V.S., Fernandez G. Long-term and transient time variation of cosmic ray fluxes detected in Argentina by CARPET cosmic ray detector. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, iss. 11-12, pp. 1410-1416. DOI:https://doi.org/10.1016/j.jastp.2010.09.034.
7. Dorman L.I. Meteorologicheskie effekty kosmicheskikh luchei [Meteorological Effects of Cosmic Rays]. Moscow, Nauka Publ., 1972, 212 p. (In Russian).
8. Dorman L.I. Eksperimental’nye i teoreticheskie osnovy astrofiziki kosmicheskikh luchei [Experimental and Theoretical Foundations of Astrophysics of Cosmic Rays]. Moscow, Nauka Publ., 1975, 402 p. (In Russian).
9. Dwyer J.R., Rassoul H.K., Al-Dayeh M., Caraway L., Wright B., Chrest A., Uman M.A., et al. A ground level gamma-ray burst observed in association with rocket-triggered lightning. Geophys. Res. Lett. 2004, vol. 31, iss. 5, L05119. DOI:https://doi.org/10.1029/2003GL018771.
10. Dwyer J.R., Uman M.A., Rassoul H.K., Al-Dayeh M., Caraway L., Jerauld J., Rakov V.A., et al. Energetic radiation produced during rocket-triggered lightning. Science. 2003, vol. 299, no. 5607, pp. 694-697. DOI:https://doi.org/10.1126/science.1078940.
11. Germanenko A.V., Balabin Yu.V., Vashenyuk E.V., Gvozdevsky B.B., Schur L.I. High-energy photons connected to atmospheric precipitations. Astrophys. Space Sci. Trans. 2011, vol. 7, iss. 4, pp. 471-475. DOI:https://doi.org/10.5194/astra-7-471-2011.
12. Germanenko A.V., Maurchev E.A., Balabin Yu.V. Calculation of registration efficiency functions of NaI (Tl) scintillation detectors and comparison of model operation with real experiment data. Trudy Kol’skogo nauchnogo tsentra RAN [Proceedings of the Kola Scientific Center of the Russian Academy of Sciences]. 2019, vol. 10, no. 8-5, pp. 82-87. (In Russian). DOI:https://doi.org/10.25702/KSC.2307-5252.2019.10.8.82-87.
13. Grigoryev I.S., Melikhov E.Z. Fizicheskie velichiny. Spravochnik [Physical Quantities. Reference book]. Moscow, Energoatomizdat Publ., 1991, 1231 p. (In Russian).
14. Gurevich A.V., Milikh G.M. Generation of X-rays due to multiple runaway breakdown inside thunderclouds. Phys. Lett. A. 1999, vol. 262, iss. 6, pp. 457-463. DOI:https://doi.org/10.1016/S0375-9601(99)00695-7.
15. Gurevich A.V., Zybin K.P. Runaway breakdown and electric discharges in thunderstorms. Physics-Uspekhi. 2001, vol. 44, no. 11, p. 1119. DOI:https://doi.org/10.1070/PU2001v044n11ABEH000939.
16. Gurevich A.V., Milikh G.M. Roussel-Dupre R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A. 1992, vol. 165, iss. 5-6, pp. 463-468. DOI:https://doi.org/10.1016/0375-9601(92)90348-P.
17. Hayakawa S. Cosmic Ray Physics: Nuclear and Astrophysical Aspects. New York, Wiley Interscience Publ., 1969, 774 p.
18. Heitler W. The Quantum Theory of Radiation. Oxford, Clarendon Press, 1936, 252 p.
19. Iskra A.A., Bakhurov V.G. Estestvennye radionuklidy v biosfere [Natural Radionuclides in the Biosphere]. Moscow, Jenergoatomizdat Publ., 1981, 123 p. (In Russian).
20. Ivanenko I.P. Elektromagnitnye kaskadnye protsessy [Electromagnetic Cascade Processes]. Moscow, Moscow State University Publ., 1972, 176 p. (In Russian).
21. Kozlov V.F. Spravochnik po radiatsionnoi bezopasnosti. 4 izdanie [Radiation Safety Handbook. 4th edition], Moscow, Jenergoatomizdat Publ. 1991, 352 p. (In Russian).
22. Lazutin L.L. Rentgenovskoe izluchenie avroral’nykh elektronov i dinamika magnitosfery [X-ray Emission of Auroral Electrons and Dynamics of the Magnetosphere]. Leningrad, Nauka Publ., 1979, 200 p. (In Russian).
23. Lee M.S. Gamma-ray Exposure Rate Monitoring by EnergySpectra of NaI (Tl) Scintillation detectors. Journal of Radiation Protection and Research. vol. 42, iss. 3, pp. 158-165. DOI:https://doi.org/10.14407/jrpr.2017.42.3.158.
24. Lidvansky A.S., Petkov V.B., Haerdinov N.S.Cosmic ray muon intensity variations caused by thunderstorm electric fields. Izvestiya RAN. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics]. 2004, vol. 68, no 11, pp. 1605-1607. (In Russian).
25. Matveev L.T. Kurs obshchei meteorologii [The Course of General Meteorology]. Leningrad, Gidrometeoizdat Publ., 1984, 752 p. (In Russian).
26. Mironychev P.V. Cosmic muons in thunderstorm electric fields. Geomagnetism and Aeronomy. 2003, vol. 43, no. 5, pp. 654-659.
27. Muraki Y., Axford W.I., Matsubara Y., Masuda K., Miyamoto Y., Menjyou H., Sakakibara S., et al. Effects of atmospheric electric fields on cosmic rays. Phys. Rev. 2004, vol. 69, 123010. DOI:https://doi.org/10.1103/PhysRevD.69.123010.
28. Murzin V.S. Vvedenie v fiziku kosmicheskikh luchei [Introduction to the Physics of Cosmic Rays]. Moscow, MSU Publ., 1988, 320 p. (In Russian).
29. Petrova T.B., Miklyayev P.S., Vlasov V.K., Afinogenov A.M., Kirjukhin O.V. Variations in the content of 7Be in a ground layer of the middle latitude atmosphere. Vestnik Moskovskogo universiteta. Seriya 2. Himiya [Bulletin of Moscow University. Series 2. Chemistry]. 2009, vol. 50, no. 5, pp. 396-401. (In Russian).
30. Shishaev V.A., Beloglazov M.I. Automatic recorder of atmospheric precipitation. Pribory i tehnika eksperimenta [Instruments and Technique of Experiment]. 2011, no. 2, pp. 156-158. (In Russian).
31. Torii T., Sugita T., Tanabe S., Kimura Y., Kamogawa M., Yajim K., Yasuda H.Gradual increase of energetic radiation associated with thunderstorm activity at the top of Mt. Fuji. Geophys. Res. Lett. 2009, vol. 36, iss. 13, L13804. DOI:https://doi.org/10.1029/2008GL037105.
32. Torii T., Takeishi M., Hosono T. Observation of gamma-ray dose increase associated with winter thunderstorm and lightning activity. J. Geophys. Res. 2002, vol. 107, no. D17. p. 4324. DOI:https://doi.org/10.1029/2001jd000938.
33. Zorina L.V., Buraeva E.A., Davydov M.G., Stasov V.V. Radionuclide 210Pb in atmospheric aerosols in a ground layer of air and meteoparameters of Rostov-on-Don. Izvestiya vuzov. Severo-Kavkazskii region. Seriya: Estestvennye nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences]. 2008, no. 5, pp. 108-113. (In Russian).
34. URL: https://rp5.ru (accessed February 22, 2023).