Институт астрономии и геофизики Монгольской академии наук
Пекин, Китайская Народная Республика
Улан-Батор, Монголия
Ключевая лаборатория мониторинга космической среды и обработки информации
Пекин, Китайская Народная Республика
Пакистанская комиссия по исследованию космоса и верхних слоев атмосферы
Пекин, Китайская Народная Республика
Используя 1-минутные данные геомагнитных индексов SYM-H, AE, параметров солнечного ветра (скорость Vsw и плотность Np и z-компоненту Bz межпланетного магнитного поля (ММП) во время 23-го и 24-го циклов солнечной активности, мы статистически проанализировали корреляции между геомагнитной активностью (бури и суббури), Vsw, Np, Bz и функциями передачи энергии из солнечного ветра в магнитосферу Земли. Для выбранной 131 бури, вызванной КВМ, SYM-H имеет более сильную зависимость от Vsw и B, чем другие параметры, тогда как выбранная 161 буря, вызванная CIR, имеет почти такие же зависимости от электрического поля солнечного ветра, скорости открытого магнитного потока dφ/dt и электрического поля пересоединения Ekl. Таким образом, электрическое поле солнечного ветра и дневное магнитное пересоединение, возможно, вносят разный вклад бури двух типов. Во время бурь различных типов интенсивность суббури АЕ зависит в основном от Bz ММП, скорости открытого магнитного потока и электрического поля пересоединения.
солнечный ветер, корональные выбросы массы, область коротирующего взаимодействия, геомагнитные бури, магнитосферные суббури, функции связи по энергии, корреляционный анализ
1. Akasofu S.I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981. Vol. 28. P. 121-190. DOI:https://doi.org/10.1007/BF00218810.
2. Alexakis P., Mavromichalaki H. Statistical analysis of interplanetary coronal mass ejections and their geoeffectiveness during the solar cycles 23 and 24. Astrophys Space Sci. 2019. Vol. 364, iss. 11. Article id. 187. 14 p. DOI:https://doi.org/10.1007/s10509-019-3677-y.
3. Badruddin B., Aslam O.P.M., Derouich M. Study of the development of geomagnetic storms in the magnetosphere using solar wind data of three different time resolutions. Astrophys. Space Sci. 2022. Vol. 367, iss. 1. Article id. 10. DOI: 10.1007/ s10509-021-04030-5.
4. Baker D.N., Pulkkinen T.I., Angelopoulos V., et al. Neutral line model of substorms: Past results and present view. J. Geophys. Res. 1996. Vol. 101, iss. A6. P. 12975-13010. DOI:https://doi.org/10.1029/95JA03753.
5. Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006. Vol. 111, iss. A7. CiteID A07S08. DOI:https://doi.org/10.1029/2005JA011447.
6. Boroyev R.N., Vasiliev M.S. Relationship of the ASY-H index with interplanetary medium parameters and auroral activity in magnetic storm main phases during CIR and ICME events. Solar-Terr. Phys. 2020. Vol. 6, iss. 1. P. 35-40. DOI:https://doi.org/10.12737/stp-61202004.
7. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975. Vol. 80, iss. 31. P. 4204. DOI: 10.1029/ JA080i031p04204.
8. Cao J., Duan A., Reme H., Dandouras I. Relations of the energetic proton fluxes in the central plasma sheet with solar wind and geomagnetic activities. J. Geophys. Res.: Space Phys. 2013. Vol. 118. P. 7226-7236. DOI:https://doi.org/10.1002/2013JA019289.
9. Du A.M., Tsurutani B.T., Sun W. Anomalous geomagnetic storm of 21-22 January 2005: A storm main phase during northward IMFs. J. Geophys. Res. 2008. Vol. 113, iss. A10. CiteID A10214. DOI:https://doi.org/10.1029/2008JA013284.
10. Duan S.P., Liu Z.X., Liang J., et al. Multiple magnetic dipolarizations observed by THEMIS during a substorm. Ann. Geophys. 2011. Vol. 29. P. 331-339. DOI:https://doi.org/10.5194/angeo-29-331-2011.
11. Gonzalez W.D., Joselyn J.A., Kamide Y., et al. What is a geomagnetic storm? J. Geophys. Res.: Space Phys. 1994. Vol. 99, iss. A4. P. 5771-5792. DOI:https://doi.org/10.1029/93JA02867.
12. Gonzalez W.D., Tsurutani B.T., Gonzalez A.L.C. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999. Vol. 88. P. 529-562. DOI:https://doi.org/10.1023/A:1005160129098.
13. He Z., Dai L., Wang C., et al. Contributions of substorm injections to SYM-H depressions in the main phase of storms. J. Geophys. Res.: Space Phys. 2016. Vol. 121. P. 11729-11736. DOI:https://doi.org/10.1002/2016JA023218.
14. Kan J.R., Lee L.C. Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett. 1979. Vol. 6, iss. 7. P. 577-580. DOI:https://doi.org/10.1029/GL006i007p00577.
15. Kataoka R., Watari S., Shimada N., et al. Downstream structures of interplanetary fast shocks associated with coronal mass ejections. Geophys. Res. Lett. 2005. Vol. 32, iss. 12. CiteID L12103. DOI:https://doi.org/10.1029/2005GL022777.
16. Katus R.M., Liemohn M.W., Ionides E.L., et al. Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity. J. Geophys. Res.: Space Phys. 2015. Vol. 120. P. 310-327. DOI: 10.1002/ 2014JA020712.
17. Le G.M., Cai Z.Y., Wang H.N., Zhu Y.T. Solar cycle distribution of great geomagnetic storms. Astrophys Space Sci. 2012. Vol. 339. P. 151-156. DOI:https://doi.org/10.1007/s10509-011-0960-y.
18. Li L.Y., Wang Z.Q. The effects of solar wind dynamic pressure changes on the substorm auroras and energetic electron injections on 24 August 2005. J. Geophys. Res.: Space Phys. 2018. Vol. 123. P. 385-399. DOI:https://doi.org/10.1002/2017JA024628.
19. Li L.Y., Cao J.B., Zhou G.C. Relation between the variation of geomagnetospheric relativistic electron flux and storm/substorm. Chinese J. Geophys. 2006. Vol. 49. P. 9-15.
20. Li L.Y., Cao J.B., Zhou G.C., Li X. Statistical roles of storms and substorms in changing the entire outer zone relativistic electron population. J. Geophys. Res. 2009. Vol. 114, iss. A12. CiteID A12214. DOI:https://doi.org/10.1029/2009JA014333.
21. Li L.Y., Yu J., Cao J.B., et al. Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region. J. Geophys. Res.: Space Phys. 2017. Vol. 122. P. 5431-5448. DOI:https://doi.org/10.1002/2016JA023634.
22. Li L.Y., Zhou S.P., Wei S.H., et al. The day-night difference and geomagnetic activity variation of energetic electron fluxes in region of South Atlantic anomaly. Space Weather. 2020. Vol. 18, iss. 9. e2020SW002479. DOI:https://doi.org/10.1029/2020SW002479.
23. Liemohn M.W., Jazowski M., Kozyra J.U., et al. CIR versus CME drivers of the ring current during intense magnetic storms. Proc. Royal Society. London, Ser. A. 2010. Vol. 466. P. 3305-3328. DOI:https://doi.org/10.1098/rspa.2010.0075.
24. Lui A.T.Y., McEntire R.W., Baker K.B. A new insight on the cause of magnetic storms. Geophys. Res. Lett. 2001. Vol. 28. P. 3413-3416. DOI:https://doi.org/10.1029/2001GL013281.
25. Newell P.T., Sotirelis T., Liou K., et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 2007. Vol. 112, iss. A1. CiteID A01206. DOI:https://doi.org/10.1029/2006JA012015.
26. Perrault P., Akasofu S.I. A study of geomagnetic storms. Geophys. J. Intern. 1978. Vol. 54. P. 547-573. DOI: 10.1111/ j.1365-246X.1978.tb05494.x.
27. Richardson I.G., Cliver E.W., Cane H.V. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972-2000. Geophys Res Lett. 2001. Vol. 28. P. 2569-2572. DOI:https://doi.org/10.1029/2001GL013052.
28. Tsurutani B.T., Gonzalez W.D. The interplanetary causes of magnetic storms: a review. Magnetic Storms. 1997. Vol. 98. P. 77. AGU Press, Washington D.C. DOI:https://doi.org/10.1029/GM098p 0077.
29. Tsurutani B.T., Gonzalez W.D., Gonzalez A.L.C., et al. Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 2006. Vol. 111, iss. A7. CiteID A07S01. DOI:https://doi.org/10.1029/2005JA011273.
30. Turner N.E., Cramer W.D., Earles S.K., Emery B.A. Geo- efficiency and energy partitioning in CIR-driven and CME-driven storms. J. Atmos. Solar-Terr. Phys. 2009. Vol. 71, iss. 10-11. P. 1023-1031. DOI:https://doi.org/10.1016/j.jastp.2009.02.005.
31. Verbanac G., Vršnak B., Živković S., et al. Solar wind high-velocity streams and related geomagnetic activity in the declining phase of solar cycle 23. Astron. Astrophys. 2011. Vol. 533. Id. A49. 6 p. DOI:https://doi.org/10.1051/0004-6361/201116615.
32. Wanliss J.A., Showalter K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. 2006. Vol. 111, iss. A2. CiteID A02202. DOI:https://doi.org/10.1029/2005ja011034.
33. Yermolaev Yu.I., Lodkina I.G., Nikolaeva N.S., et al. Statistic study of the geoeffectiveness of compression regions CIRs and Sheaths. J. Atmos. Solar-Terr. Phys. 2018. Vol. 180. P. 52-59. DOI:https://doi.org/10.1016/j.jastp.2018.01.027.
34. Zhang Y., Sun W., Feng X.S., et al. Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23. J. Geophys. Res. 2008. Vol. 113, iss. A8. CiteID A08106. DOI:https://doi.org/10.1029/2008JA013095.
35. Zhao M.X., Le G.M., Lu J.Y. Can we estimate the intensities of great geomagnetic storms (ΔSYM-H≤-200 nT) with the burton equation or the O’Brien and McPherron equation? Astrophys. J. 2022. Vol. 928. P. 18. DOI:https://doi.org/10.3847/1538-4357/ac50a8.
36. URL: https://omniweb.gsfc.nasa.gov/form/omni_min.html (accessed April 6, 2023).
37. URL: https://www.sidc.be/ silso/datafiles (accessed April 6, 2023).
38. URL: https://www.ngdc.noaa.gov/stp/geomag/geoib.html (accessed April 6, 2023).
39. URL: https://isgi.unistra.fr/events_sc.php (accessed April 6, 2023).
40. URL: https://omniweb.gsfc.nasa.gov/ow.html (accessed April 6, 2023).