СТАТИСТИЧЕСКАЯ СВЯЗЬ ПЕРЕМЕЩАЮЩИХСЯ ИОНОСФЕРНЫХ ВОЗМУЩЕНИЙ С НЕЙТРАЛЬНЫМ ВЕТРОМ И ВОЗМУЩЕНИЯМИ В СТРАТОСФЕРЕ
Аннотация и ключевые слова
Аннотация (русский):
На основе представительной статистики параметров перемещающихся ионосферных возмущений (ПИВ), полученной Екатеринбургским и Магаданским радарами, показано, что распределения количества ПИВ и средних скоростей ПИВ по азимутам и локальному времени находятся в хорошем соответствии с гипотезой фильтрации внутренних гравитационных волн (ВГВ) нейтральным ветром. Проведена проверка влияния значительных зимних внезапных стратосферных потеплений на ВГВ в ионосфере. Предложен метод оценки зональной и меридиональной скоростей нейтрального ветра по распределениям параметров среднемасштабных ПИВ (СМПИВ). Метод универсален и позволяет по статистике наблюдений двумерного вектора фазовой скорости СМПИВ, полученных любым инструментом, оценивать зональную и меридиональную скорости нейтрального ветра. Существует большое количество данных, из которых можно получить двумерный вектор фазовой скорости СМПИВ (в отличие от трехмерного), в том числе карты возмущений полного электронного содержания и снимки камер всего неба. Следовательно, данный метод может быть полезен при разработке и совершенствовании моделей нейтрального ветра.

Ключевые слова:
ПИВ, среднемасштабные ПИВ, ВГВ, гипотеза ветровой фильтрации ВГВ, нейтральный ветер, внезапные стратосферные потепления
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Перевалова Н.П., Ойнац А.В. Морфология ночных среднемасштабных перемещающихся ионосферных возмущений в среднеширотной области F (обзор современных представлений). Иркутск, изд-во ИГУ, 2020. 83 с.

2. Afraimovich E.L., Kosogorov E.A., Leonovich L.A., et al. Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays. J. Atmos. Solar-Terr. Phys. 2000. Vol. 62, iss. 7. P. 553-565. DOI:https://doi.org/10.1016/S1364-6826(00)00011-0.

3. Alexander M.J., Gille J., Cavanaugh C., et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J. Geophys. Res. 2008. Vol. 113, no. D15. P. 1-11. DOI:https://doi.org/10.1029/2007jd008807.

4. Crowley G., Jones T.B., Dudeney J.R. Comparison of short period TID morphologies in Antarctica during geomagnetically quiet and active intervals. J. Atmos. Terr. Phys. 1987, Vol. 49. P. 1155-1162.

5. Drob D.P., Emmert J.T., Crowley G., et al. An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res. 2008. Vol. 113, iss. A12, CiteID A12304. DOI:https://doi.org/10.1029/2008JA013668.

6. Drob D.P., Emmert J.T., Meriwether J.W., et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth and Space Sci. 2015. Vol. 2. P. 301-319. DOI:https://doi.org/10.1002/2014EA000089.

7. Fritts D.C., Alexander M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003. Vol. 41. P. 1003-1066, DOI:https://doi.org/10.1029/2001RG000106.

8. Gelaro R., McCarty W., Suárez M.J., et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate. 2017. Vol. 30, no. 14. P. 5419-5454. DOI:https://doi.org/10.1175/JCLI-D-16-0758.1.

9. Hines C.O. Internal gravity waves at ionospheric heights. Can. J. Phys. 1960. Vol. 38. P. 1441-1481.

10. Huang F., Dou X., Lei J., et al. Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China. J. Geophys. Res.: Space Phys. 2016. Vol. 121, no. 9. P. 8887-8899. DOI:https://doi.org/10.1002/2016JA022760.

11. Ivanov V.B., Tolstikov M.V. Instability of the state of the night-time topside ionosphere. J. Atmos. Solar-Terr. Phys. 2003. Vol. 65, iss. 6. P. 673-676. DOI:https://doi.org/10.1016/S1364-6826(03)00080-4.

12. Kalikhman A.D. Medium-scale traveling ionospheric disturbances and thermospheric winds in the F-region. J. Atmos. Solar-Terr. Phys. 1980. Vol. 42. P. 697-703.

13. Labitzke K., Naujokat B. The lower Arctic stratosphere in winter since 1952. SPARC Newslett. 2000. Vol. 15. P. 11-14.

14. Lay E.H., Parker P.A., Light M., et al. Midlatitude ionospheric irregularity spectral density as determined by ground-based GPS receiver networks. J. Geophys. Res.: Space Phys. 2018. Vol. 123, no. 6. P. 5055-5067, DOI:https://doi.org/10.1029/2018JA025364.

15. Ma S.Y., Schlegel K., Xu J.S. Case studies of the propagation characteristics of auroral TIDs with EISCATCP2 data using maximum entropy cross-spectral analysis. Ann. Geophys. 1998. Vol. 16, iss. 2. P. 161-167. DOI:https://doi.org/10.1007/S00585-998-0161-3.

16. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., et al. Studying of the spatial-temporal structure of wavelike ionospheric disturbances on the base of Irkutsk Incoherent Scatter Radar and Digisonde data. J. Atmos. Solar-Terr. Phys. 2013. Vol. 105-106. P. 350-357. DOI:https://doi.org/10.1016/j.jastp.2013.09.001.

17. Medvedev A.V. Ratovsky K.G., Tolstikov M.V., et al. A statistical study of internal gravity wave characteristics using the combined Irkutsk Incoherent Scatter Radar and Digisonde data. J. Atmos. Solar-Terr. Phys. 2015. Vol. 132. P. 13-21. DOI:https://doi.org/10.1016/j.jastp.2015.06.012.

18. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., et al. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J. Geophys. Res.: Space Phys. 2017. Vol. 122. P. 7567-7580. DOI:https://doi.org/10.1002/2017JA024103.

19. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., et al. Method for determining neutral wind velocity vectors using measurements of internal gravity wave group and phase velocities. Atmosphere. 2019. Vol. 10, no. 9. P. 546. DOI: 10.3390/ atmos10090546.

20. Negale M.R., Taylor M.J., Nicolls M.J., et al. Seasonal propagation characteristics of MSTIDs observed at high latitudes over Central Alaska using the Poker Flat Incoherent Scatter Radar. J. Geophys. Res.: Space Phys. 2018. Vol. 123. P. 5717-5737. DOI:https://doi.org/10.1029/2017JA024876.

21. Nicolls M.J., Heinselman C.J. Three-dimensional measurements of traveling ionospheric disturbances with the Poker Flat Incoherent Scatter Radar. Geophys. Res. Lett. 2007. Vol. 34. P. L21104. DOI:https://doi.org/10.1029/2007GL031506.

22. Nicolls M.J., Vadas S.L., Aponte N., Sulzer M.P. Horizontal parameters of daytime thermospheric gravity waves and E region neutral winds over Puerto Rico. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 575-600, DOI: 10.1002/ 2013JA018988.

23. Oinats A.V., Kurkin V.I., Nishitani N. Statistical study of medium-scale traveling ionospheric disturbances using SuperDARN Hokkaido ground backscatter data for 2011. Earth, Planets and Space. 2015. Vol. 67. Article id. 22. 9 p. DOI:https://doi.org/10.1186/s40623-015-0192-4.

24. Oinats A.V., Nishitani N., Ponomarenko P., et al. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth, Planets and Space. 2016a. Vol. 68. Article id. 8. 13 p. DOI:https://doi.org/10.1186/s40623-016-0390-8.

25. Oinats A.V., Nishitani N., Ponomarenko P., Ratovsky K.G. Diurnal and seasonal behavior of the Hokkaido East ground backscatter: simulation and observation. Earth, Planets and Space. 2016b. Vol. 68. Article id. 18. 12 p. DOI:https://doi.org/10.1186/s40623-015-0378-9.

26. Otsuka Y. Medium-Scale Traveling Ionospheric Disturbances. Geophys. Monograph Ser. Ionosphere Dynamics and Applications. 2021. P. 421-437. DOI:https://doi.org/10.1002/9781119815617. ch18.

27. Pedlosky J. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer, USA, 2003. 260 p.

28. Pogoreltsev A.I., Pertsev N.N. The influence of background wind on the formation of the acoustic-gravity wave structure in the thermosphere. Izvestiya. Atmospheric and Oceanic Phys. 1996. Vol. 132, no. 6. P. 723-728.

29. Shcherbakov A.A., Medvedev A.V., Kushnarev D.S., et al. Calculation of meridional neutral winds in the middle latitudes from the Irkutsk Incoherent Scatter Radar. J. Geophys. Res.: Space Phys. 2015. Vol. 120. P. 10851-10863. DOI: 10.1002/ 2015JA021678.

30. Shiokawa K., Ihara C., Otsuka Y., Ogawa T. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res. 2003. Vol. 108, iss. A1. CiteID 1052. DOI:https://doi.org/10.1029/2002JA009491.

31. Shiokawa K., Otsuka Y., Ogawa T. Propagation characteristics of nighttime mesospheric and thermospheric waves observed by optical mesosphere thermosphere imagers at middle and low latitudes. Earth, Planets and Space. 2009. Vol. 61. P. 479-491. DOI:https://doi.org/10.1186/BF03353165.

32. Syrenova T.E, Beletsky A.B, Ratovsky K.G., et al. Morphology of traveling wave disturbances recorded in Eastern Siberia in 630 nm atomic oxygen emission. Atmosphere. 2022. Vol. 13, iss. 2. P. 198. DOI:https://doi.org/10.3390/atmos13020198.

33. Tolstikov M.V., Oinats A.V., Medvedeva I.V., et al. Relation of traveling ionospheric disturbances characteristics with planetary waves in the middle atmosphere. Proc. PhotonIcs & Electromagnetics Research Symposium 2019. Spring (PIERS-Spring), Rome, Italy, 2019. P. 2176-2182. DOI:https://doi.org/10.1109/PIERS-Spring46901.2019.9017884.

34. Tolstikov M.V., Oinats A.V., Medvedeva I.V., Nishitani N. Method for estimating neutral wind azimuth using 2D TID propagation parameters. Proc. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science.Rome, Italy, 2020. P. 1-4. DOI:https://doi.org/10.23919/URSIGASS 49373.2020.9232189.

35. Vadas S.L., Nicolls M.J. Using PFISR measurements and gravity wave dissipative theory to determine the neutral, background thermospheric winds. Geophys. Res. Lett. 2008. Vol. 35, iss. 2. CiteID L02105. DOI:https://doi.org/10.1029/2007GL031522.

36. Van de Kamp M., Pokhotelov D., Kauristie K. TID characterized using joint effort of incoherent scatter radar and GPS. Ann. Geophys. 2014. Vol. 32. P. 1511-1532. DOI:https://doi.org/10.5194/angeo-32-1511-2014.

37. Vlasov A., Kauristie K., Van de Kamp M., et al. A study of traveling ionospheric disturbances and atmospheric gravity waves using EISCAT Svalbard Radar IPY-data. Ann. Geophys. 2011. Vol. 29. P. 2101-2116. DOI:https://doi.org/10.5194/angeo-29-2101-2011.

38. Waldock J.A., Jones T.B. The effects of neutral winds on the propagation of medium-scale atmospheric gravity waves at mid-latitudes. J. Atmos. Terr. Phys. 1984. Vol. 46. P. 217-231. DOI:https://doi.org/10.1016/0021-9169(84)90149-1.

39. Waldock J.A., Jones T.B. HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. J. Atmos. Terr. Phys. 1986. Vol. 48. P. 245-260. DOI:https://doi.org/10.1016/0021-9169(86)90099-1.

40. Williams P.J.S., Van Eyken A.P., Bertin F. A test of the Hines dispersion equation for atmospheric gravity waves. J. Atmos. Solar-Terr. Phys. 1982. Vol. 44, iss. 7. P. 573-576. DOI:https://doi.org/10.1016/0021-9169(82)90067-8.

41. Yang H., Monte-Moreno E., Hernández-Pajares M. Multi-TID detection and characterization in a dense global navigation satellite system receiver network. J. Geophys. Res.: Space Phys. 2017. Vol. 122, no. 9. P. 9554-9575. DOI: 10.1002/ 2017JA023988.

42. URL: http://ckp-rf.ru/ckp/3056 (дата обращения 28 июля 2022 г.).

43. URL: http://ckp-rf.ru/usu/77733 (дата обращения 28 июля 2022 г.).

Войти или Создать
* Забыли пароль?