МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПОГЛОЩЕНИЯ ЭНЕРГИИ ИЗЛУЧЕНИЯ МНОГОСЛОЙНОЙ СТРУКТУРОЙ И РЕШЕНИЕ СЕТОЧНЫМ МЕТОДОМ
Аннотация и ключевые слова
Аннотация (русский):
При исследовании радиационного воздействия на микросхемы возникает задача расчета поглощенной энергии. Часто она сводится к определению радиационной стойкости микросхем. Однако в некоторых случаях требуется определить распределение температур и напряжений в корпусах микросхем. Для этого необходимо получить точную картину как поглотилась энергии излучения в каждом слое в зависимости от координаты. В работе рассмотрено решение данной задачи сеточным методом, который позволяет рассчитать поглощение энергии в каждой точке многослойной структуры. Для этого рассматривается размещение микросхемы в трехмерной системе координат, ее многослойная структура разбивается на узлы, в каждом из которых рассчитывается поглощенная доза. Представленная математическая модель описывает процессы поглощения и ослабления интенсивности потока энергии -квантов. В модели учтены процессы, связанные с переносом энергии между областями для фотоэффекта и Комптон-эффекта. Предложенный метод программно реализован, и в работе приводятся результаты расчета поглощенной дозы в каждом слое некоторой многослойной структуры. Преимуществом разработанной модели и метода ее решения является получение значение дозы в каждой точке многослойной структуры в зависимости от координат.

Ключевые слова:
Многослойная структура вещества, поглощение энергии, радиационное воздействие, фотоэффект, эффект Комптона, сеточный метод.
Список литературы

1. Модель поглощения электромагнитного излучения СВЧ-диапазона биологическими тканями / И.А. Лагуцкий, М.В. Давыдов, В.В. Кизименко, В.А. Богуш // Доклады Белорусского государственного университета информатики и радиоэлектроники. – 2021. – Т. 19, № 1. – С. 52-60. – DOI: 10.35596/1729-7648-2021-91-1-52-60.

2. Мокрушина, С.А. Сравнение отклика МОП-транзистора на воздействие рентгеновского и гамма-облучения / С.А. Мокрушина, Н.М. Романов // Известия высших учебных заведений России. Радиоэлектроника. – 2020. – Т. 23. № 1. – С. 30-40. – DOI: 10.32603/1993-8985-2020-23-1-30-40.

3. Лагаев, Д.А. Конструктивно-технологические особенности КМОП КНИ транзисторов с повышенной стойкостью к накопленной дозе ионизирующего излучения / Д.А. Лагаев, Н.А. Шелепин // Электронная техника. Серия 3: Микроэлектроника. – 2020. – № 1 (177). – С. 5-13. – DOI: 10.7868/S2410993220010017.

4. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials / S. Yue, M. Hou, R. Wang [et al.] // Optics Express. – 2020. –Vol. 28(21). – Pp. 31844-31861. – DOI: 10.1364/OE.403551.

5. Калашников, Н.П. Интенсивность излучения, возникающего при взаимодействии релятивистского электрона с периодическими неоднородностями потенциала монокристалла / Н.П. Калашников, А.С. Ольчак // Вестник Национального исследовательского ядерного университета МИФИ. – 2021. – Т. 10, № 5. – С. 385-389. – DOI: 10.1134/S2304487X21050060.

6. Gate grounded n-MOS sensibility to ionizing dose borel / T. Michez, A. Furic, S. Danzeca [et al.] // 18th European Conference on Radiation and Its Effects on Components and Systems, RADECS 2018. – 2018. – С. 9328673. – DOI: 10.1109/RADECS45761.2018.9328673.

7. Особенности технологического процесса изготовления микросхем космического назначения по технологии КМОП КНС / В.К. Зольников, С.А. Евдокимова, И.В. Журавлева [и др.] / Моделирование систем и процессов. – 2020. – Т. 13, № 3. – С. 53-58. – DOI: 10.12737/2219-0767-2020-13-3-53-58.

8. Performance comparison of two Monte Carlo ray-tracing methods for calculating radiative heat transfer / H. Liu, H. Zhou, D. Wang, Y. Han // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2020. – Vol. 256. –C. 107305. – DOI: 10.1016/j.jqsrt.2020.107305.

9. Olarinoye, I.O. EXABCal: A program for calculating photon exposure and energy absorption buildup factors / I.O. Olarinoye, R.I. Odiaga, S. Paul // Heliyon. – 2019. – Vol. 5(7). – C. e02017. – DOI: 10.1016/j.heliyon.2019.e02017.

10. Зольников, В.К. Проектирование микросхем с учетом радиационного воздействия / В.К. Зольников, В.П. Крюков, А.И. Яньков // Вопросы атомной науки и техники. Серия: Физика радиационного воздействия на радиоэлектронную аппаратуру. – 2009. – № 2. – С. 28-30.

11. Глушко, А.А. Анализ методов математического моделирования работы в условиях воздействия ионизирующего излучения КМОП - микросхем, сформированных по технологии "кремний - на - изоляторе" / А.А. Глушко, А.И. Зубкова, Ю.П. Королёва // Технологии инженерных и информационных систем. – 2021. – № 1. – С. 10-18.

12. Особенности оценки радиационной стойкости интегральных схем к нейтронному воздействию / А.И. Чумаков, А.В. Согоян, Д.В. Бобровский [и др.] // Безопасность информационных технологий. – 2021. – Т. 28, № 2. – С. 34-43. – DOI: 10.26583/bit.2021.2.03.

13. Физическая модель оценки интенсивности одиночных событий при воздействии отдельных ядерных частиц / А.Л. Савченко, А.Ю. Кулай, И.И. Струков [и др.] // Моделирование систем и процессов. – 2019. – Т. 12, № 4. – С. 78-83. – DOI: 10.12737/2219-0767-2020-12-4-78-83.

14. Шоболова, Т.А. Радиационно стойкий биполярный транзистор на структурах "кремний на изоляторе" / Т.А. Шоболова, С.В. Оболенский, Ю.А. Кабальнов // Электронная техника. Серия 2: Полупроводниковые приборы. – 2020. – № 3 (258). – С. 34-42. – DOI: 10.36815/2073-8250-2020-258-3-34-42.

15. Кабальнов, Ю.А. Моделирование радиационных эффектов в транзисторах на КНС-структурах / Ю.А. Кабальнов, А.Н. Качемцев, С.В. Оболенский // Вопросы атомной науки и техники. Серия: Физика радиационного воздействия на радиоэлектронную аппаратуру. – 2018. – № 3. – С. 31-38.

16. Design and experimental research on buffer protection of high-g penetrator for deep space exploration / H. Luo, Y. Li, C. Fan [et al.] // Acta Astronautica. – 2021. – Vol. 189. – Pp. 63-78. – DOI: 10.1016/j.actaastro.2021.08.020.

17. Coupled charge and radiation transport processes in thermophotovoltaic and thermoradiative Cells / W.A. Callahan, D. Feng, Z.M. Zhang [et al.] // Physical Review Applied. – 2021. – Vol. 15(5). – C. 054035. – DOI: 10.1103/PhysRevApplied.15.054035.

18. Крюков, В.П. Проблемы моделирования базовых элементов КМОП БИС двойного назначения в САПР / В.П. Крюков, К.В. Зольников, С.А. Евдокимова // Моделирование систем и процессов. – 2013. – № 4. – С. 41-44. –DOI: 10.12737/4045.

19. Метод и алгоритм поиска дефектов для радиационно-стойких микросхем / К.В. Зольников, В.А. Скляр, В.П. Крюков [и др.] // Вопросы атомной науки и тех-ники. Серия: Физика радиационного воздействия на радиоэлектронную аппаратуру. – 2014. – № 2. – С. 10-13.

20. Свидетельство о регистрации программы для ЭВМ RU 2019663599. Программа для моделирования стойкости изделий в условиях длительного воздействия ионизирующего излучения космического пространства для создания радиационно-стойкой электронной компонентной базы : № 2019662572 заявл. 11.10.2019 ; опубл. 21.10.2019 / А.С. Грошев, С.А. Евдокимова, В.К. Зольников ; заявитель и правообладатель ФГБОУ ВО «ВГЛТУ».

21. Свидетельство о регистрации программы для ЭВМ 2021664834. Программа для определения начального уровня радиационного эффекта при воздействии радиации на микросхемы : № 2021663914 заявл. 06.09.2021 ; опубл. 14.09.2021 / И.В. Журавлева, К.А. Чубур, А.Е. Козюков, В.К. Зольников ; заявитель и правообладатель ФГБОУ ВО «ВГЛТУ».

22. Свидетельство о регистрации программы для ЭВМ 2021664833. Программа расчета влияния радиации на структуру микросхемы : № 2021663915 заявл. 06.09.2021 ; опубл. 14.09.2021 / И.В. Журавлева, К.А. Чубур, А.Е. Козюков, К.В. Зольников ; заявитель и правообладатель ФГБОУ ВО «ВГЛТУ».