СРАВНИТЕЛЬНЫЙ АНАЛИЗ ВОЗМУЩЕННОСТИ В СРЕДНЕШИРОТНОЙ СТРАТОСФЕРЕ И ИОНОСФЕРЕ В ЗИМНИЕ ПЕРИОДЫ
Аннотация и ключевые слова
Аннотация (русский):
В работе проведен совместный анализ пространственно-временной динамики интенсивности ионосферных и стратосферных возмущенний (с масштабами, характерными для внутренних гравитационных волн) на разных долготах средних широт Cеверного полушария. Анализируются зимние периоды 2012–2013 и 2018–2019 гг., когда происходили сильные внезапные стратосферные потепления (ВСП). Показано, что в области существования зимнего циркумполярного вихря в стратосфере происходит увеличение возмущенности в ограниченном широтном интервале 40°–60° N. В условиях ВСП прекращается генерация возмущений в стратосфере, что проявляется в значительном снижении индекса стратосферной возмущенности. Подобную динамику демонстрируют и широтно-временные распределения индекса возмущенности полного электронного содержания ионосферы. Уровень ионосферной возмущенности на средних широтах существенно снижается после ВСП. Уменьшение ионосферной возмущенности можно объяснить уменьшением волновой генерации в стратосфере, связанным с разрушением циркумполярного вихря в периоды ВСП.

Ключевые слова:
ионосфера, полное электронное содержание, возмущенность, внутренние гравитационные волны, стратосфера, циркумполярный вихрь, внезапные стратосферные потепления
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Толстиков М.В., Ратовский К.Г., Медведева И.В., Хабитуев Д.С. Оценка влияния стратосферной активности на ионосферу по данным измерений на комплексе инструментов ИСЗФ СО РАН. Солнечно-земная физика. 2021. Т. 7, № 4. С. 84-90. DOI:https://doi.org/10.12737/szf-74202108.

2. Шпынев Б.Г., Черниговская М.А., Хабитуев Д.С. Спектральные характеристики атмосферных волн, генерируемых зимним стратосферным струйным течением северного `полушария. Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13, № 2. С. 120-131. DOI:https://doi.org/10.21046/2070-7401-2016-13-2-120-131.

3. Ясюкевич А.С., Черниговская М.А., Мыльникова А.А. и др. Исследование сезонных вариаций ионосферной возмущенности по данным GPS/ГЛОНАСС над регионами Восточной Сибири и Дальнего Востока. Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14, № 3. С. 249-262. DOI:https://doi.org/10.21046/2070-7401-2017-14-4-249-262.

4. Afraimovich E.L., Edemskiy I.K., Voeykov S.V., et al. The first GPS-TEC imaging of the space structure of MS wave packets excited by the solar terminator. Ann. Geophys. 2009. Vol. 27. P. 1521-1525. DOI:https://doi.org/10.5194/angeo-27-1521-2009.

5. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J. Climate. 2007. Vol. 20. P. 449-469. DOI:https://doi.org/10.1175/JCLI3996.1.

6. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G., et al. Ionospheric response to winter stratosphere/lower mesosphere jet stream in the Northern Hemisphere as derived from vertical radio sounding data. J. Atmos. Solar-Terr. Phys. 2018. Vol. 180. P. 126-136. DOI:https://doi.org/10.1016/j.jastp.2017.08.033.

7. Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere. J. Atmos. Solar-Terr. Phys. 2000. Vol. 62. P. 685-693. DOI:https://doi.org/10.1016/S1364-6826(00)00029-8.

8. Frissell N.A., Baker J.B.H., Ruohoniemi J.M., et al. Sources and characteristics of medium-scale traveling ionospheric disturbances observed by high-frequency radars in the North American sector. J. Geophys. Res. Space Phys. 2016. Vol. 121. P. 3722-3739. DOI:https://doi.org/10.1002/2015JA022168.

9. Gerrard A.J., Bhattacharya Y., Thayer J.P. Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE) event. Atmos. Chemistry Phys. 2011. Vol. 11. P. 11913-11917. DOI:https://doi.org/10.5194/acp-11-11913-2011.

10. Hersbach H., Bell B., Berrisford P., et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. 2020. Vol. 146. P. 1999-2049. DOI:https://doi.org/10.1002/qj.3803.

11. Hocke K., Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995. Ann. Geophys. 1996. Vol. 14. P. 917-940. DOI:https://doi.org/10.1007/s00585-996-0917-6.

12. Kaifler B., Lübken F.-J., Höffner J., et al. Lidar observations of gravity wave activity in the middle atmosphere over Davis (69° S, 78° E), Antarctica. J. Geophys. Res. Atmos. 2015. Vol. 120. P. 4506-4521. DOI:https://doi.org/10.1002/2014JD022879.

13. Labitzke K. Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter. J. Atmos. Sci. 1972. Vol. 29. P. 756-766. DOI:https://doi.org/10.1175/1520-0469(1972)029<0756:TCITMA>2.0.CO;2.

14. Lastovicka J. Forcing of the ionosphere by waves from below. J. Atmos. Solar-Terr. Phys. 2006. Vol. 68. P. 479-497. DOI:https://doi.org/10.1016/j.jastp.2005.01.018.

15. Liu X., Yue J., Xu J., et al. Variations of global gravity waves derived from 14 years of SABER temperature observations. J. Geophys. Res. Atmos. 2017. Vol. 122. P. 6231-6249. DOI:https://doi.org/10.1002/2017JD026604.

16. Matsuno T. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 1971. Vol. 28. P. 1479-1494. DOI:https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

17. Nayak C., Yiğit E. Variation of small-scale gravity wave activity in the ionosphere during the major sudden stratospheric warming event of 2009. J. Geophys. Res.: Space Phys. 2019. Vol. 124. P. 470-488. DOI:https://doi.org/10.1029/2018JA026048.

18. Pancheva D., Mukhtarov P., Mitchell N.J., et al. Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. J. Geophis. Res. 2008. Vol. 113. D12105. DOI:https://doi.org/10.1029/2007JD009011.

19. Ratovsky K.G., Medvedev A.V., Tolstikov M.V. Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data. Adv. Space Res. 2015. Vol. 55. P. 2041-2047. DOI:https://doi.org/10.1016/j.asr.2014.08.001.

20. Rideout W., Coster A. Automated GPS processing for global total electron content data. GPS Solutions. 2006. Vol. 10. P. 219-228. DOI:https://doi.org/10.1007/s10291-006-0029-5.

21. Schoeberl M.R. Stratospheric warmings: observations and theory. J. Geophys. Res.: Space Phys. 1978. Vol. 16. P. 521-538. DOI:https://doi.org/10.1029/RG016i004p00521.

22. Shpynev B.G., Churilov S.M., Chernigovskaya M.A. Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere. J. Atmos. Solar-Terr. Phys. 2015. Vol. 136(B). P. 201-215. DOI:https://doi.org/10.1016/j.jastp.2015.07.005.

23. Shpynev B.G., Khabituev D.S., Chernigovskaya M.A., Zorkal’tseva O.S. Role of winter jet stream in the middle atmosphere energy balance. J. Atmos. Solar-Terr. Phys. 2019. Vol. 188. P. 1-10. DOI:https://doi.org/10.1016/j.jastp.2019.03.008.

24. Wu D.L., Waters J.W. Satellite observations of atmospheric variances: A possible indication of gravity waves. Geophys. Res. Lett. 1996. Vol. 23, iss. 24. P. 3631-3634. DOI:https://doi.org/10.1029/96GL02907.

25. Yasyukevich A.S. Features of short-period variability of total electron content at high and middle latitudes. Solar-Terr. Phys. 2021. Vol. 7, iss. 4. P. 71-78. DOI:https://doi.org/10.12737/stp-74202107.

26. Yasyukevich Yu., Mylnikova A., Vesnin A. GNSS-based non-negative absolute ionosphere total electron content, its spatial gradients, time derivatives and differential code biases: bounded-variable least-squares and Taylor series. Sensors. 2020a. Vol. 20, iss. 19, 5702. DOI:https://doi.org/10.3390/s20195702.

27. Yasyukevich Y.V., Kiselev A.V., Zhivetiev I.V., et al. SIMuRG: System for ionosphere monitoring and research from GNSS. GPS Solut. 2020b. Vol. 24, 69. DOI:https://doi.org/10.1007/s10291-020-00983-2.

28. Yasyukevich A., Medvedeva I., Sivtseva V., et al. Strong interrelation between the short-term variability in the ionosphere, upper mesosphere, and winter polar stratosphere. Remote Sens. 2020с. Vol. 12, 1588. DOI:https://doi.org/10.3390/rs12101588.

29. Yiğit E., Medvedev A.S. Role of gravity waves in vertical coupling during sudden stratospheric warmings. Geoscience Lett. 2016. Vol. 3, 27. DOI:https://doi.org/10.1186/s40562-016-0056-1.

30. Zorkaltseva O.S., Vasilyev R.V. Stratospheric influence on the mesosphere-lower thermosphere over mid latitudes in winter observed by a Fabry-Perot interferometer. Ann. Geophys. 2021. Vol. 39. P. 267-276. DOI:https://doi.org/10.5194/angeo-39-267-2021.

31. URL: https://omniweb.gsfc.nasa.gov/form/dx1.html (дата обращения 30 марта 2022 г.).

Войти или Создать
* Забыли пароль?