с 01.01.2011 по настоящее время
Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
The paper presents the results of studies of wavefront distortions at different heights in the atmosphere. We have used measurement wavefront data to determine optical turbulence parameters along the line of sight of the Large Solar Vacuum Telescope. Through cross-correlation analysis of differential motions of sunspots at spaced wavefront sensor subapertures, we determined turbulent parameters at different heights at the Large Solar Vacuum Telescope site. The differential motions of sunspots characterize the small-scale structure of turbulent phase distortions in the atmosphere. Synchronous temporal changes in the amplitude of these distortions at certain regions of the telescope aperture are conditioned by turbulent layers at different heights. We have estimated the contribution of optical turbulence to integral distortions at the telescope aperture for layers 0–0.6, 0.6–1.1, 1.1–1.7 km. The contribution of optical turbulence concentrated in a 1.7 km atmospheric layer to the wavefront distortions at the aperture telescope is shown to be ~43 %.
telescope, wavefront, turbulence profiles, adaptive optics
1. Arlt R., Vaquero J.M. Historical sunspot records. Living Rev. Solar Phys. 2020, vol. 17, iss. 1, article id. 1. DOI:https://doi.org/10.1007/s41116-020-0023-y.
2. Banakh V.A., Smalikho I.N., Falits A.V. Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam. Atmospheric Measurement Techniques. 2021, vol. 14, iss. 2, pp. 1511-1524. DOI:https://doi.org/10.5194/amt-14-1511-2021.
3. Bolbasova L.A., Lukin V.P. Atmospheric research for adaptive optics problem. Optika atmosfery i okeana. [Atmospheric and Oceanic Optics J.]. 2021, vol. 34, no. 4, pp. 254-271. DOI:https://doi.org/10.15372/AOO20210403. (In Russian).
4. Botygina N.N., Emaleev O.N., Konyaev P.A., Kopylov E.A., Lukin V.P. Development of components for adaptive optics systems for solar telescopes. Atmospheric and Oceanic Optics. 2018, vol. 31, pp. 216-223. DOI:https://doi.org/10.1134/S1024856018020057.
5. Grigoryev V.M., Demidov M.L., Kolobov D.Yu., Pulyaev V.A., Skomorovsky V.I., Chuprakov S.A. AMOS team Project of the Large Solar Telescope with mirror 3 m in diameter. J. Solar-Terr. Phys. 2020, vol. 6, iss. 2, pp. 14-29. DOI:https://doi.org/10.12737/stp-62202002.
6. Kamardin A.P., Odintsov S.L. Height profiles of the structure characteristic of air temperature in the atmospheric boundary layer from sodar measurements. Atmospheric and Oceanic Optics. 2017, vol. 30, iss. 1, pp. 33-38. DOI:https://doi.org/10.1134/S1024856017010079.
7. Kazakov D.V., Lavrinov V.V., Lavrinova L.N. Results of numerical testing of algorithms for centering of focal spots in a Shack-Hartmann wavefront sensor. Proc. SPIE. 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics; Tomsk. 2018, vol. 10833, 108332D. DOI:https://doi.org/10.1117/12.2504557.
8. Kleimenov V.V., Vozmishchev I.Yu., Novikova E.V. Application limitations of a laser guide star in adaptive optoelectronic systems caused by its jitter in the atmosphere. J. Optical Technology. 2021, vol. 88, iss. 10, pp. 569-573. DOI:https://doi.org/10.1364/JOT.88.000569.
9. Kornilov V., Vozyakova O., Safonov B., Shatsky N., Ilyasov S., Tillaev Y., Ibragimov M., Egamberdiev S. Measurement of optical turbulence in free atmosphere above Mt. Maidanak in 2005-2007. Astron. Lett. 2009, vol. 35, no. 8, pp. 547-554. DOI:https://doi.org/10.1134/S1063773709080040.
10. Kovadlo P.G., Lukin V.P., Shikhovtsev A.Yu. Development of the Model of Turbulent Atmosphere at the Large Solar Vacuum Telescope Site as Applied to Image Adaptation. Atmospheric and Oceanic Optics. 2019, vol. 32, pp. 202-206. DOI:https://doi.org/10.1134/S1024856019020076.
11. Lavrinov V.V., Lavrinova L.N. Reconstruction of wavefront distorted by atmospheric turbulence using a shack-hartman sensor. Computer Optics. 2019, vol. 43, iss. 4, pp. 586-595. DOI:https://doi.org/10.18287/2412-6179-2019-43-4-586-595.
12. Lukin V.P., Botygina N.N., Antoshkin L.V., Borzilov A.G., Emaleev O.N., Konyaev P.A., Kovadlo P.G., Kolobov D.Yu., Selin A.A., Soin E.L., Shikhovtsev A.Y., Chuprakov S.A. Multi-Cascade Image Correction System for the Large Solar Vacuum Telescope. Atmospheric and Oceanic Optics. 2019, vol. 32, iss. 5, pp. 597-606. DOI:https://doi.org/10.1134/S1024856019050117.
13. Lukin V.P., Antoshkin L.V., Bol’basova L.A., Botygina N.N., Emaleev O.N., Kanev F.Yu., Konyaev P.A., Kopylov E.A., Lavrinov V.V., Lavrinova L.N., Makenova N.A., Nosov V.V., Nosov E.V., Torgaev A.V. The history of the development and genesis of works on adaptive optics in the Institute of atmospheric optics. Atmospheric and Oceanic Optics. 2020, vol. 33, iss. 1, pp. 85-103. DOI:https://doi.org/10.1134/S1024856020010078.
14. Marco de la Rosa J., Montoya L., Collados M., Montilla I., Vega Reyes N. Daytime turbulence profiling for EST and its impact in the solar MCAO system design. Proc. SPIE. Adaptive optics systems V; Edinburgh, United Kingdom. 2016, vol. 9909, 99096X. DOI:https://doi.org/10.1117/12.2229471.
15. Nosov V.V., Lukin V.P., Nosov E.A., Torgaev A.V. Method for atmospheric turbulence profile measurement from observation of laser guide stars. Atmospheric and Oceanic Optics. 2017, vol. 30, iss. 2, pp. 176-183. DOI:https://doi.org/10.1134/S1024856017020099.
16. Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Determination of the structural characteristic of the refractive index of optical waves in the atmospheric boundary layer with remote acoustic sounding facilities. Atmosphere. 2019. Vol. 10, iss. 11. 711. DOI:https://doi.org/10.3390/atmos10110711.
17. Rasouli S., Rajabi Y. Investigation of the inhomogeneity of atmospheric turbulence at day and night times. Optics and Laser Technology. 2016, vol. 77, pp. 40-50. DOI:https://doi.org/10.1016/j.optlastec.2015.08.017.
18. Rasouli S., Ramaprakash A.N., Das H.K., Rajarshi C.V., Rajabi Y., Dashti M. Two channel wavefront sensor arrangement employing Moiré deflectometry. Proc.SPIE. Optics in Atmospheric Propagation and Adaptive Systems XII; Berlin, Germany, 2009, vol. 7476, 74760K. DOI:https://doi.org/10.1117/12.829962.
19. Potekaev A., Shamanaeva L., Kulagina V. Spatiotemporal dynamics of the kinetic energy in the Atmospheric Boundary layer from minisodar measurements. Atmosphere. 2021, vol. 12, iss. 4, p. 421. DOI:https://doi.org/10.3390/atmos12040421.
20. Shikhovtsev A.Y., Chuprakov S.A., Kovadlo P.G. Sensor to register the optical distortions in the wide field of view of solar telescope. Proc. SPIE. XIV International Conference on Pulsed Lasers and Laser Applications; Tomsk, Russia. 2019, vol. 11322, id. 113220B. DOI:https://doi.org/10.1117/12.2553045.
21. Shikhovtsev A.Y., Kovadlo P.G., Kiselev A.V., Kolobov D.Y., Lukin V.P., Russkikh I.V., Shikhovtsev M.Y. Modified Method to Detect the Turbulent Layers in the Atmospheric Boundary Layer for the Large Solar Vacuum Telescope. Atmosphere. 2021, vol. 12, p. 159. DOI:https://doi.org/10.3390/atmos12020159.
22. Shikhovtsev A.Yu., Lukin V.P., Kovadlo P.G. The development of the adaptive optics systems for the ground-based solar telescopes. Optika atmosfery i okeana. [Atmospheric and Oceanic Optics J.]. 2021, vol. 34, no. 5, pp. 385-392. DOI:https://doi.org/10.15372/AOO20210512. (In Russian).
23. Song T., Cai Z., Liu Y., Zhao M., Fang Y., Zhang X., Wang J., Li X., Song Q., Du Z. Daytime optical turbulence profiling with a profiler of the differential solar limb. Monthly Notices of the Royal Astronomical Society. 2020, vol. 499, iss. 2, pp. 1909-1917. DOI:https://doi.org/10.1093/mnras/staa2729.
24. Wang Z., Zhang L., Kong L., Bao H., Guo Y., Rao X., Zhong L., Zhu L., Rao C. A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles. Monthly Notices of the Royal Astronomical Society. 2018, vol. 478, iss. 2, pp. 1459-1467. DOI:https://doi.org/10.1093/mnras/sty1097.