СОВРЕМЕННЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ ТАРГЕТНОЙ РАДИОНУКЛИДНОЙ ТЕРАПИИ
Аннотация и ключевые слова
Аннотация (русский):
СОДЕРЖАНИЕ Введение 1. Особенности адресной доставки терапевтических радионуклидов 2. Дизайн препаратов для таргетной радионуклидной терапии (ТРНТ) 2.1 Радионуклиды 2.2 Синтез радиоконъюгатов 2.3 Векторные носители 3. Субклеточное нацеливание радионуклидов 4. Дозиметрия при ТРНТ Заключение

Ключевые слова:
солидные злокачественные опухоли, таргетная радионуклидная терапия
Список литературы

1. Krylov VV, Kochetova TYu, Garbuzov PI, Shurinov AYu, Borodavina EV. Radionuclide Therapy. Therapeutic Radiology. National Guide. Ed. Caprin A.D., Mardynsky Yu.S. Moscow, GEOTAR-Media Publ., 2019. P. 637-664. (In Russ.). [Крылов В.В., Кочетова Т.Ю., Гарбузов П.И., Шуринов А.Ю., Бородавина Е.В. Радионуклидная терапия // Терапевтическая радиология. Национальное руководство / Под ред. акад. РАН Каприна А.Д., чл.-корр. РАН Мардынского Ю.С. М.: ГЭОТАР-Медиа, 2019. С. 637-664.].

2. Chernov VI, Medvedev AA, Sinilkin IG, Zelchan RV, Bragina OD, Choynzonov EL. Nuclear Medicine as a Tool for Diagnosis and Targeted Cancer Therapy. Bulletin of Siberian Medicine. 2018;17;1:220-231. DOI:https://doi.org/10.20538/1682-0363-2018-1-220-231 (In Russ.). [Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д., Чойзонов Е.Л. Ядерная медицина в диагностике и адресной терапии злокачественных новообразований // Бюллетень сибирской медицины. 2018. Т.17, № 1. С. 220-231. DOI:https://doi.org/10.20538/1682-0363-2018-1-220-231].

3. Krylov VV, Kochetova TY, Belozerova MS, Voloznev LV. Features of the Use of Various Radiopharmaceuticals for the Treatment of Patients with Bone Metastases. Palliative Medicine and Rehabilitation. 2015;4:26-33. (In Russ.). [Крылов В.В., Кочетова Т.Ю., Белозерова М.С., Волознев Л.В. Особенности применения различных радиофармпрепаратов в лечении больных с метастазами в кости // Паллиативная медицина и реабилитация. 2015. № 4. С. 26-33].

4. Pattni BS, Torchilin VP. Targeted Drug Delivery Systems: Strategies and Challenges. Targeted Drug Delivery: Concepts and Design. Advances in Delivery Science and Technology. Ed. Devarajan P., Jain S. Springer, Cham, 2015. P. 1-38.

5. Bae YH, Park K. Targeted Drug Delivery to Tumors: Myths, Reality and Possibility. J. Control Release. 2011;153;3:198-205. DOI:https://doi.org/10.1016/j.jconrel.2011.06.001.

6. Keefe DMK, Bateman EH. Potential Successes and Challenges of Targeted Cancer Therapies. J. Natl. Cancer Inst. Monogr. 2019;2019;53:lgz008. DOI:https://doi.org/10.1093/jncimonographs/lgz008.

7. Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of Human Tumours. Nat. Rev. Cancer. 2015;15;6:347-60. DOI:https://doi.org/10.1038/nrc3925.

8. Peltek OO, Muslimov AR, Zyuzin MV, Timin AS. Current Outlook on Radionuclide Delivery Systems: from Design Consideration to Translation into Clinics. J. Nanobiotechnology. 2019;17;1:90. DOI:https://doi.org/10.1186/s12951-019-0524-9.

9. Chernov VI, Bragina OD, Sinilkin IG, Medvedeva AA, Zel’chan RV. Radionuclide Theranostics of Malignancies. Russian Journal of Radiology. 2016;97;5:306-313. DOI:https://doi.org/10.20862/0042-4676-2016-97-5-306-313. (In Russ.). [Чернов В.И., Брагина О.Д., Синилкин И.Г., Медведева А.А., Зельчан Р.В. Радионуклидная тераностика злокачественных образований // Вестник рентгенологии и радиологии. 2016. Т.9, № 5. С. 306-313. DOI:https://doi.org/10.20862/0042-4676-2016-97-5-306-313.].

10. Makvandi M, Dupis E, Engle JW, Nortier FM, Fassbender ME, et al. Alpha-Emitters and Targeted Alpha Therapy in Oncology: from Basic Science to Clinical Investigations. Target Oncol. 2018;13;2:189-203. DOI:https://doi.org/10.1007/s11523-018-0550-9.

11. Ku A, Facca VJ, Cai Z, Reilly RM. Auger Electrons for Cancer Therapy - a Review. EJNMMI Radiopharm Chem. 2019;4;1:27. DOI:https://doi.org/10.1186/s41181-019-0075-2.

12. Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular Targeting of Theranostic Radionuclides. Front. Pharmacol. 2018;9:996. DOI:https://doi.org/10.3389/fphar.2018.00996.

13. Rosenkranz AA, Slastnikova TA, Georgiev GP, Zalutsky MR, Sobolev AS. Delivery Systems Exploiting Natural Cell Transport Processes of Macromolecules for Intracellular Targeting of Auger Electron Emitters. Nucl. Med. Biol. 2020;80;1:45-56. DOI:https://doi.org/10.1016/j.nucmedbio.2019.11.005.

14. Edem PE, Fonslet J, Kjær A, Herth M, Severin G. In Vivo Radionuclide Generators for Diagnostics and Therapy. Bioinorg. Chem. Appl. 2016;2016:6148357. DOI:https://doi.org/10.1155/2016/6148357.

15. Price EW, Orvig C. Matching Chelators to Radiometals for Radiopharmaceuticals. Chem Soc Rev. 2014;43;1:260-90. DOI:https://doi.org/10.1039/c3cs60304k.

16. Chernov VI, Bragina OD, Sinilkin IG, Titskaya AA, Zelchan RV. Radioimmunotherapy in the Treatment of Malignancies. Siberian Journal of Oncology. 2016;15;2:101-106. DOI:https://doi.org/10.21294/1814-4861-2016-15-2-101-106. (In Russ.). [Чернов В.И., Брагина О.Д., Синилкин И.Г., Тицкая А.А., Зельчан Р.В. Радиоиммунотерапия в лечении злокачественных образований // Сиб. Онкол. Жур. 2016. Т.15, № 2. С. 101-106. DOI:https://doi.org/10.21294/1814-4861-2016-15-2-101-106].

17. ClinicalTrials.gov: Database of privately and publicly funded clinical studies conducted around the world. U.S. National Library of Medicine. Available from: https://clinicaltrials.gov. 2019 Oct 07.

18. Yu S, Li A, Liu Q, Yuan X, Xu H, Jiao D, et al. Recent Advances of Bispecific Antibodies in Solid Tumors. J. Hematol. Oncol. 2017;10;1:155. DOI:https://doi.org/10.1186/s13045-017-0522-z.

19. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and Challenges Towards Targeted Delivery of Cancer Therapeutics. Nat. Commun. 2018;9;1:1410. DOI:https://doi.org/10.1038/s41467-018-03705-y.

20. Altai M, Membreno R, Cook B, Tolmachev V, Zeglis BM. Pretargeted Imaging and Therapy. J. Nucl. Med. 2017;58;10:1553-1559. DOI:https://doi.org/10.2967/jnumed.117.189944.

21. Shen G, Liu Z, Bao Y, Kuang A, Wu H From Darkness to Light: Pretargeted Radionuclide Imaging Driven by Tetrazine Bioorthogonal Chemistry. Curr. Top. Med. Chem. 2018;18;21:1851-1855. DOI:https://doi.org/10.2174/156802661821190104120031.

22. Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, et al. Pretargeting in Nuclear Imaging and Radionuclide Therapy: Improving Efficacy of Theranostics and Nanomedicines. Biomaterials. 2018;179:209-245. DOI:https://doi.org/10.1016/j.biomaterials.2018.06.021.

23. Cheal SM, Xu H, Guo HF, Patel M, Punzalan B, Fung EK, et al. Theranostic Pretargeted Radioimmunotherapy of Internalizing Solid Tumor Antigens in Human Tumor Xenografts in Mice: Curative Treatment of HER2-Positive Breast Carcinoma. Theranostics. 2018;8;18:5106-5125. DOI:https://doi.org/10.7150/thno.26585.

24. Bodet-Milin C, Bailly C, Touchefeu Y, Frampas E, Bourgeois M, Rauscher A, et al. Clinical Results in Medullary Thyroid Carcinoma Suggest High Potential of Pretargeted Immuno-PET for Tumor Imaging and Theranostic Approaches. Front. Med. (Lausanne). 2019;6:124. DOI:https://doi.org/10.3389/fmed.2019.00124.

25. Richards DA. Exploring Alternative Antibody Scaffolds: Antibody Fragments and Antibody Mimics for Targeted Drug Delivery. Drug. Discov. Today Technol. 2018;30:35-46. DOI:https://doi.org/10.1016/j.ddtec. 2018.10.005.

26. Bragina OD, Larkina MS, Stasyuk ES, Chernov VI, Yusubov MS, et al. Development of highly specific radiochemical compounds based on 99m Tc-labeled recombinant molecules for targeted imaging of cells overexpressing Her-2/neu. Bulletin of Siberian Medicine. 2017; 16(3):25-33. Russian. DOIhttps://doi.org/10.20538/1682-0363-2017-3-25-33. (In Russ.). [Брагина О.Д., Ларькина М.С., Стасюк Е.С., Чернов В.И., Юсубов М.С. и др. Разработка высокоспецифичного радиохимического соединения на основе меченых 99mТс рекомбинантных адресных молекул для визуализации клеток с гиперэкспрессией Her-2/neu // Бюллетень сибирской медицины. 2017. Т.16, № 3. С. 25-33. DOIhttps://doi.org/10.20538/1682-0363-2017-3-25-33].

27. Mitran B, Güler R, Roche FP, Lindström E, Selvaraju RK, Fleetwood F, et al. Radionuclideimaging of VEGFR2 in Glioma Vasculature Using Biparatopic Affibody Conjugate:Proof-of-Principle in a Murine Model. Theranostics. 2018;8;16:4462-4476.DOI:https://doi.org/10.7150/thno.24395.

28. Soudy R, Byeon N, Raghuwanshi Y, Ahmed S, Lavasanifar A, Kaur K. Engineered Peptides for Applications in Cancer-Targeted Drug Delivery and Tumor Detection. Mini. Rev. Med. Chem. 2017;17;18:1696-1712. DOI:https://doi.org/10.2174/1389557516666160219121836.

29. Cives M, Strosberg J. Radionuclide Therapy for Neuroendocrine Tumors. Curr. Oncol. Rep. 2017;19;2:9. DOI:https://doi.org/10.1007/s11912-017-0567-8.

30. Fani M, Nicolas GP, Wild D. Somatostatin Receptor Antagonists for Imaging and Therapy. J. Nucl. Med. 2017;58:61S-66S. DOI:https://doi.org/10.2967/jnumed.116.186783.

31. Królicki L, Bruchertseifer F, Kunikowska J, Koziara H, Królicki B, Jakuciński M, et al. Safety and Efficacy of Targeted Alpha Therapy with 213Bi-DOTA-Substance P in Recurrent Glioblastoma. Eur. J. Nucl. Med. Mol. Imaging. 2019;46;3:614-622. DOI:https://doi.org/10.1007/s00259-018-4225-7.

32. Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med. Res. Rev. 2016;36;3:494-575. DOI:https://doi.org/10.1002/med.21387.

33. Sun M, Niaz MO, Nelson A, Skafida M, Niaz MJ. Review of 177Lu-PSMA-617 in Patients with Metastatic Castration-Resistant Prostate Cancer. Cureus. 2020;12;6:e8921. DOI:https://doi.org/10.7759/cureus.8921.

34. Violet J, Sandhu S, Iravani A, Ferdinandus J. Thang S.P., Kong G., et al. Long-Term Follow-up and Outcomes of Retreatment in an Expanded 50-Patient Single-Center Phase II Prospective Trial of 177Lu-PSMA-617 Theranostics in Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2020;61;6:857-865. DOI:https://doi.org/10.2967/jnumed.119.236414.

35. Umbricht CA, Benešová M, Schibli R, Müller C. Preclinical Development of Novel PSMA-Targeting Radioligands: Modulation of Albumin-Binding Properties to Improve Prostate Cancer Therapy. Mol Pharm. 2018;15;6:2297-2306. DOIhttps://doi.org/10.1021/acs.molpharmaceut. 8b00152.

36. Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ. Application of Nanotechnology to Cancer Radiotherapy. Cancer Nanotechnol. 2016;7;1:11. DOI:https://doi.org/10.1186/s12645-016-0024-7.

37. Pouget JP, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to Radiobiology of Targeted Radionuclide Therapy. Front. Med. (Lausanne). 2015;2:12. DOI:https://doi.org/10.3389/fmed.2015.00012.

38. Vallis KA, Reilly RM, Scollard D, Merante P, Brade A, Velauthapillai S, et al. Phase I Trial to Evaluate the Tumor and Normal Tissue Uptake, Radiation Dosimetry and Safety of (111)In-DTPA-Human Epidermal Growth Factor in Patients with Metastatic EGFR-Positive Breast Cancer. Am. J. Nucl. Med. Mol. Imaging. 2014;4;2:181-92.

39. Violet JA, Farrugia G, Skene C, White J, Lobachevsky P, Martin R. Triple Targeting of Auger Emitters Using Octreotate Conjugated to a DNA-Binding Ligand and a Nuclear Localizing Signal. Int. J. Radiat. Biol. 2016;92;11:707-715.

40. Sobolev AS. Modular Nanotransporters for Nuclear-Targeted Delivery of Auger Electron Emitters. Front. Pharmacol. 2018;9:952. DOI:https://doi.org/10.3389/fphar.2018.00952.

41. Rosenkranz AA, Slastnikova TA, Durymanov MO, Georgiev GP, Sobolev AS. Exploiting Active Nuclear Import for Efficient Delivery of Auger Electron Emitters into the Cell Nucleus. Int. J. Radiat. Biol. 2020:1-11. DOI:https://doi.org/10.1080/09553002.2020.1815889.

42. Sobolev AS. The Delivery of Biologically Active Agents into the Nuclei of Target Cells for the Purposes of Translational Medicine. Acta Naturae. 2020;12;4:47-56. DOI:https://doi.org/10.32607/actanaturae.11049.

43. Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative Imaging for Targeted Radionuclide Therapy Dosimetry - Technical Review. Theranostics. 2017;7;18:4551-4565. DOI:https://doi.org/10.7150/thno.19782.

Войти или Создать
* Забыли пароль?