ESTIMATED INFLUENCE OF STRATOSPHERIC ACTIVITY ON THE IONOSPHERE ACCORDING TO MEASUREMENTS WITH ISTP SB RAS TOOLS
Аннотация и ключевые слова
Аннотация (русский):
We present the results of a comprehensive study of the manifestation of wave activity with periods of internal gravity waves (IGW) in various regions of the atmosphere: in the stratosphere, upper mesosphere, and in the F2-region of the ionosphere. The study is based on radiophysical and spectrometric measurements made with tools of the Institute of Solar-Terrestrial Physics (ISTP) SB RAS and the Era-Interim reanalysis data. The correlation coefficient with time shift between ionospheric and stratospheric activity for the annual interval varies in the range from 0.45 to 0.54, and for the 27-day interval it reaches the levels 0.4–0.8 in seventy percent of the cases. Thirty percent of correlation coefficients less than 0.4 can be explained by the influence of neutral wind, geomagnetic activity, and non-stratospheric IGW sources. Comparison between stratospheric activity and variations in characteristics of traveling ionospheric disturbances (TID) has shown that a ~15 day shift in stratospheric activity results in a fairly high correlation between stratospheric activity and disturbance of IGW characteristics (~0.6). The delay of about 15 days can be attributed to the delay in the temperature variations at heights of the lower thermosphere relative to the temperature variations at the altitude pressure level of 1 hPa. Comparative analysis of variations in mesospheric and ionospheric activity has revealed time intervals when their behavior is consistent.

Ключевые слова:
stratosphere, mesosphere, ionosphere, planetary waves, TID, IGW
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Bath M. Spectral Analysis in Geophysics. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1974. 563 р.

2. Dell’Aquila A., Lucarini V., Ruti P.M., Calmanti S. Hayashi spectra of the northern hemisphere mid-latitude atmospheric variability in the NCEP-NCAR and ECMWF reanalyses. Climate Dynamics. 2005, vol. 25, no. 6, pp. 639-652.

3. Erokhin N.S., Mikhailovskaya L.A., Shalimov S.L. Propagation of large scale internal gravitational waves to ionospheric heights through wind structures in the lower and medium atmosphere. Geophys. Res. 2007a, iss. 7, pp. 53-64. (In Russiain).

4. Erokhin N.S., Zolnikova N.N., Mikhailovskaya L.A. Peculiarities of interaction of internal gravitational waves with temperature-wind structures of the atmosphere during their propagation into the ionosphere. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2007b, vol. 2, pp. 84-89. (In Russian).

5. Goncharenko L., Zhang S.-R. Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys. Res. Lett. 2008, vol. 35, L21103. DOI: 10.1029/ 2008GL035684.

6. Goncharenko L.P., Chau J.L., Liu H.L., Coster A.J. Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 2010, vol. 37, L10101. DOI:https://doi.org/10.1029/2010 GL043125.

7. Goncharenko L.P., Chau J.L., Condor P., Coster A., Benkevitch L. Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity: Case study of January 2013. Geophys. Res. Lett. 2013, vol. 40. DOI:https://doi.org/10.1002/grl.50980.

8. Hayashi Y. A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteorol. Soc. Japan. 1971, vol. 49, no. 2, pp. 125-128.

9. Korenkov Y.N., Klimenko V.V., Klimenko M.V., Bessarab F.S., Korenkova N.A., Ratovsky K.G., Chernigovskaya M.A., Shcherbakov A.A., Sahai Y., Fagundes P.R., de Jesus R., de Abreu A.J., Condor P. The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event. J. Geophys. Res. 2012, vol. 117, A10309. DOI:https://doi.org/10.1029/2012JA018018.

10. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Alsatkin S.S., Scherbakov A.A. A statistical study of internal gravity wave characteristics using the combined Irkutsk Incoherent Scatter Radar and Digisonde data. J. Atmos. Solar-Terr.Phys. 2015, vol. 132, pp. 13-21. DOI:https://doi.org/10.1016/j.jastp.2015.06.012.

11. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Oinats A.V., Alsatkin S.S, Zherebtsov G.A. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J. Geophys. Res. 2017, vol. 12, iss. 7, pp. 7567-7580. DOI:https://doi.org/10.1002/2017JA024103.

12. Pancheva D., Mukhtarov P. Stratospheric warmings: The atmosphere-ionosphere coupling paradigm. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, iss. 13, pp. 1697-1702. DOI:https://doi.org/10.1016/j.jastp.2011.03.006.

13. Perminov V.I., Semenov A.I., Pertsev N.N., Medvedeva I.V. Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes. Geomagnetism and Aeronomy. 2014a, vol. 54, no. 2, pp. 230-239.

14. Perminov V.I., Semenov A.I., Medvedeva I.V., Zheleznov Yu.A. Variability of mesopause temperature from the hydroxyl airglow observations over midlatitudinal sites, Zvenigorod and Tory, Russia. Adv. Space Res. 2014b, vol. 54, pp. 2511-2517. DOI:https://doi.org/10.1016/j.asr.2014.01.027.

15. Pogoreltsev A.I., Savenkova E.N., Aniskina O.G., Ermakova T., Chen W., Wei K. Interannual and intraseasonal variability of stratospheric dynamics and stratosphere-troposphere coupling during northern winter. J. Atmos. Solar-Terr. Phys. 2015, vol. 136B, pp. 187-200.

16. Polyakova A.S., Chernigovskaya M.A., Perevalova N.P. Ionospheric Effects of Sudden Stratospheric Warmings in Eastern Siberia Region. J. Atmos. Solar-Terr. Phys. 2014, vol. 120, pp. 15-23. DOI:https://doi.org/10.1016/j.jastp.2014.08.011.

17. Shpynev B.G., Churilov S.M., Chernigovskaya M.A. Generation of waves by jet stream instabilities in winter polar stratosphere/mesosphere. J. Atmos. Solar-Terr. Phys. 2015, vol. 136, pp. 201-215. DOI:https://doi.org/10.1016/j.jastp.2015.07.005.

18. Suslov A.I., Erokhin N.S., Mikhailovskaya L.A., Artekha S.N., Gusev A.A. Modeling the passage of large-scale internal gravitational waves from the troposphere to the ionosphere. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017, vol. 14, no. 5, pp. 19-25. (In Russiain).

19. Tolstikov M.V., Medvedev A.V., Ratovsky K.G., Medvedeva I.V. Studies of dynamic characteristics of atmospheric planetary waves during stratospheric warmings 2006-2013. Proc. XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). Beijing, 2014, pp. 1-4. DOI:https://doi.org/10.1109/URSIGASS.2014.6929752.

20. Tolstikov M.V., Oinats A.V., Medvedeva I.V., Medvedev A.V., Ratovsky K.G., Nishitani N. Relation of traveling ionospheric disturbances characteristics with planetary waves in the middle atmosphere. Proc. PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). Rome, Italy, 2019, pp. 2176-2182. DOI:https://doi.org/10.1109/PIERS-Spring46901. 2019.9017884.

21. URL: http://disc.gsfc.nasa.gov/Aura (accessed October 20, 2021).

22. URL: ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_ DATA/INDICES/KP_AP (accessed October 20, 2021).

23. URL: http://ckp-rf.ru/ckp/3056 (accessed October 20, 2021).

24. URL: http://ckp-rf.ru/usu/77733 (accessed October 20, 2021).

Войти или Создать
* Забыли пароль?