ВЗАИМОДЕЙСТВИЕ ДЛИННОПЕРИОДНЫХ УНЧ-ВОЛН И ЗАРЯЖЕННЫХ ЧАСТИЦ В МАГНИТОСФЕРЕ: ТЕОРИЯ И НАБЛЮДЕНИЯ (ОБЗОР)
Рубрики: ОБЗОРЫ
Аннотация и ключевые слова
Аннотация (русский):
Статья посвящена обзору современного состояния проблемы взаимодействия между длиннопериодными ультра-низкочастотными (УНЧ) волнами и высокоэнергичными частицами. Рассмотрены элементы теории обмена энергией между волнами и частицами, переноса частиц поперек магнитных оболочек под действием электромагнитного поля волны, вопросы ускорения частиц радиационных поясов посредством как резонансных, так и нерезонансных механизмов. Обсуждаются механизмы генерации азимутально-мелкомасштабных УНЧ-волн за счет неустойчивостей, возникающих при резонансе волна—частица. Отдельно разобраны случаи альфвеновских, дрейфово-компрессионных и зеркально-дрейфовых волн. Отмечено, что ввиду отсутствия детальной теории зеркально-дрейфовых мод возможность их существования в магнитосфере не является доказанным фактом. Обобщены экспериментальные факты регистрации полоидальных и компрессионных УНЧ-волн, генерированных неустойчивыми популяциями высокоэнергичных частиц. Разобраны механизмы модуляции потоков энергичных частиц УНЧ-волнами и возможные наблюдательные проявления такой модуляции. Рассмотрены методы изучения структуры волн поперек магнитных оболочек посредством регистрации потоков резонансных частиц с конечным ларморовским радиусом.

Ключевые слова:
УНЧ-волны, взаимодействие волна—частица, радиационные пояса, плазменные неустойчивости
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Губарь Ю.И. Дрейфовый резонанс релятивистских электронов с УНЧ-волнами как нелинейный резонанс. Космические исследования. 2010. Т. 48. С. 308-316.

2. Гульельми А.В., Золотухина Н.А. Возбуждение альвеновских колебаний магнитосферы асимметричным кольцевым током. Исследования по геомагнетизму, аэрономии и физике Солнца. 1980. Т. 50. С. 129-138.

3. Гульельми А.В., Потапов А.С. Частотно-модулиро-ванные ультранизкочастотные волны в околоземном космическом пространстве. УФН. 2021. Т. 191, № 5. С. 475-491. DOI:https://doi.org/10.3367/UFNr.2020.06.038777.

4. Демехов А.Г., Трахтенгерц В.Ю., Райкрофт М, Нанн Д. Ускорение электронов в магнитосфере свистовыми волнами переменной частоты. Геомагнетизм и аэрономия. 2006. Т. 46. С. 751-756.

5. Зеленый Л.М., Веселовский И.С. Плазменная гелиогеофизика. Т. 2. М.: Физматлит, 2010. 560 с.

6. Золотухина Н.А. О возбуждении альвеновских волн в магнитосфере движущимся источником. Иссл. по геомагнетизму, аэрономии и физике Солнца. 1974. Т. 34. С. 20-23.

7. Климушкин Д.Ю. Метод описания альфвеновской и магнитозвуковой ветвей колебаний неоднородной плазмы. Физика плазмы. 1994. Т. 20. С. 309-315.

8. Кораблев Л.В., Рудаков Л.И. О неустойчивости плазмы с изотропной функцией распределения. ЖЭТФ. 1968. Т. 54. С. 818-821.

9. Костарев Д.В., Магер П.Н. Дрейфово-компресси-онные волны, распространяющиеся в направлении дрейфа энергичных электронов в магнитосфере. Солнечно-земная физика. 2017. Т. 3, № 3. С. 20-29. DOI:https://doi.org/10.12737/szf-33201703.

10. Козырева О.В., Пилипенко В.А., Энгебретсон М., и др. Соответствие между пространственным распределением мощности УНЧ-волн и границами аврорального овала. Солнечно-земная физика. 2016. Т. 2, № 2. С. 35-45. DOI:https://doi.org/10.12737/16848.

11. Леонович А.С., Мазур В.А. Линейная теория МГД-колебаний в магнитосфере. М.: Физматлит, 2016. 480 с.

12. Лифшиц А.Е., Федоров Е.Н. Гидромагнитные колебания магнитосферного резонатора. Доклады Академии наук СССР. 1986. № 287. С. 90-94.

13. Лонгмайр К. Физика плазмы. М.: Атомиздат, 1966. 345 с.

14. Магер П.Н., Климушкин Д.Ю. Генерация альфвеновских волн движущейся неоднородностью плазмы в магнитосфере. Физика плазмы. 2007. Т. 33. С. 435-442.

15. Михайловский А.Б., Похотелов O.A. Новый механизм генерации геомагнитных пульсаций быстрыми частицами. Физика плазмы. 1975. Т. 1, № 5. С. 786-792.

16. Михайловский А.Б., Похотелов O.A. Непотенциальная неустойчивость на запертых электронах в магнитосфере. Физика плазмы. 1976. Т. 2, № 6. С. 928-935.

17. Михайловский А.Б., Фридман А.М. Дрейфовые волны в плазме конечного давления. ЖЭТФ. 1966. Т. 51. С. 1430.

18. Моисеев А.В., Стародубцев С.А., Мишин В.В. Особенности возбуждения и распространения по азимуту и меридиану длиннопериодных Pi3-колебаний геомагнитного поля 8 декабря 2017 г. Солнечно-земная физика 2020. Т. 6. С. 57-72. DOI:https://doi.org/10.12737/szf-63202007.

19. Нортроп Т. Адиабатическая теория движения заряженных частиц. М.: Атомиздат, 1967. 128 с.

20. Пилипенко В.А., Похотелов О.А. Дрейфово-зеркаль-ная неустойчивость в кривом магнитном поле. Геомагнетизм и аэрономия. 1976. Т. 16. С. 161-163.

21. Пилипенко В.А., Белаховский В.Б., Самсонов С.Н. О возможных механизмах ускорения электронов до релятивистских энергий в магнитосфере Земли. Труды Кольского научного центра РАН. 2017. Т. 8. С. 24-30.

22. Пилипенко В.А., Похотелов О.А., Фейгин Ф.З. Влияние баунс-резонансов на возбуждение альвеновских волн вне плазмосферы. Геомагнетизм и аэрономия. 1977. Т. 17. С. 894-899.

23. Потапов А.С. Релятивистские электроны внешнего радиационного пояса и методы их прогноза (обзор). Солнечно-земная физика. 2017. Т. 3, № 1. С. 46-58. DOI:https://doi.org/10.12737/22210.

24. Потапов А.С., Цэгмэд Б., Рыжакова Л.В. Связь потоков релятивистских электронов на геостационарной орбите с уровнем УНЧ-активности на поверхности Земли и в солнечном ветре в 23-м цикле солнечной активности. Космические исследования. 2012. Т. 50. С. 130-146.

25. Похотелов О.А., Пилипенко В.А. К теории дрейфово-зеркальной неустойчивости магнитосферной плазмы. Геомагнетизм и аэрономия. 1976. Т. 16. С. 504-510.

26. Романова Н.В., Пилипенко В.А., Ягова Н.В., Белов А.В. Статистическая связь частоты сбоев на геостационарных спутниках с потоками энергичных электронов и протонов. Космические исследования. 2005. Т. 43. С. 186-193.

27. Трахтенгерц В.Ю., Райкрофт М.Дж. Свистовые и альфвеновские циклотронные мазеры в космосе. М.: Физматлит, 2011. 344 с.

28. Челпанов М.А., Магер П.Н., Климушкин Д.Ю., Магер О.В. Наблюдения магнитосферных волн, распространяющихся в направлении дрейфа электронов, с помощью Екатеринбургского когерентного радара. Солнечно-земная физика. 2019. Т. 5, № 1. С. 68-76. DOI:https://doi.org/10.12737/stp-51201907.

29. Allan W., Poulter E.M., Nielsen E. STARE observations of a Pc5 pulsation with large azimuthal wave number. J. Geophys. Res. 1982. Vol. 87. P. 6163-6172. DOI:https://doi.org/10.1029/JA087iA08p06163.

30. Allison H.J., Shprits Y.Y. Local heating of radiation belt electrons to ultra-relativistic energies. Nature Communications. 2020. Vol. 11, no. 4533. DOI:https://doi.org/10.1038/s41467-020-18053-z.

31. Alperovich L.S., Fedorov E.N. Hydromagnetic Waves in the Magnetosphere and the Ionosphere. Springer. 2007. 426 p. DOI:https://doi.org/10.1007/978-1-4020-6637-5.

32. Anderson B.J. Statistical studies of Pc3-5 pulsations and their relevance for possible source mechanisms of ULF waves. Ann. Geophys. 1993. Vol. 11. P. 128-143.

33. Antonsen T.M., .Jr., Lane B. Kinetic equations for low frequency instabilities in inhomogeneous plasmas. Physics of Fluids 1980. Vol. 23. P. 1205-1214. DOI:https://doi.org/10.1063/1.863121.

34. Baddeley L.J., Yeoman T.K., Wright D.M., et al. Morning sector drift-bounce resonance driven by ULF waves observed in artificially induced HF radar backscatter. Ann. Geophys. 2002. Vol. 20. P. 1487-1498. DOI:https://doi.org/10.5194/angeo-20-1487-2002.

35. Baddeley L.J., Yeoman T.K., Wright D.M., et al. Statistical study of unstable particle populations in the global ring current and their relation to the generation of high-m ULF waves. Ann. Geophys. 2004. Vol. 22. P. 4229-4241. DOI:https://doi.org/10.5194/angeo-22-4229-2004.

36. Baddeley L.J., Yeoman T.K., Wright D.M., et al. On the coupling between unstable magnetospheric particle populations and resonant high-m ULF wave signatures in the ionosphere. Ann. Geophys. 2005. Vol. 23. P. 567-577. DOI:https://doi.org/10.5194/angeo-23-567-2005.

37. Baddeley L.J., Lorentzen D.A., Partamies N., et al. Equatorward propagating auroral arcs driven by ULF wave activity: Multipoint ground- and space-based observations in the dusk sector auroral oval. J. Geophys. Res.: Space Phys. 2017. Vol. 122, no. 5. P. 5591-5605. DOI:https://doi.org/10.1002/2016JA023427.

38. Baker D.N. Satellite anomalies due to space storms. Space Storms and Space Weather Hazards. New York: Springer, 2001. P. 251-284. DOI:https://doi.org/10.1007/978-94-010-0983-6_11.

39. Baker D.N., Belian R.D., Higbie P.R., et al. Deep dielectric charging effects due to high-energy electrons in Earth’s outer magnetosphere. J. Electrostatics. 1987. Vol. 20, no. 1. P. 3-19. DOI:https://doi.org/10.1016/0304-3886(87)90082-9.

40. Baker D.N., Pulkkinen T.I., Li X., et al. A strong CME-related magnetic cloud interaction with the Earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997. Geophys. Res. Lett. 1998. Vol. 25, no. 15. P. 2975-2978. DOI:https://doi.org/10.1029/98GL01134.

41. Baker D.N., Hoxie V., Zhao H., et al. Multiyear measurements of radiation belt electrons: acceleration, transport, and loss. J. Geophys. Res.: Space Phys. 2019. Vol. 124, no. 4. P. 2588-2602. DOI:https://doi.org/10.1029/2018JA026259.

42. Barfield J.N., McPherron R.L. Statistical characteristics of storm-associated Pc5 micropulsations observed at the synchronous equatorial orbit. J. Geophys. Res. 1972. Vol. 77. P. 4720-4733. DOI:https://doi.org/10.1029/JA077i025p04720.

43. Beharrell M., Kavanagh A.J., Honary F. On the origin of high m magnetospheric waves. J. Geophys. Res.: Space Phys. 2010. Vol. 115, no. A2. DOI:https://doi.org/10.1029/2009JA014709.

44. Brizard A.J., Chan A.A. Relativistic bounce-averaged quasilinear diffusion equation for low-frequency electromagnetic fluctuations. Physics of Plasmas. 2001. Vol. 8. P. 4762-4771. DOI:https://doi.org/10.1063/1.1408623.

45. Catto P.J., Tang W.M., Baldwin D.E. Generalized gyrokinetics. Plasma Phys. 1981. Vol. 23. P. 639-650. DOI:https://doi.org/10.1088/0032-1028/23/7/005.

46. Chelpanov M.A., Mager P.N., Klimushkin D.Yu., et al. Experimental evidence of drift compressional waves in the magnetosphere: An Ekaterinburg Coherent Decameter Radar case study. J. Geophys. Res.: Space Phys. 2016. Vol. 121. P. 1315-1326. DOI:https://doi.org/10.1002/2015JA022155.

47. Chelpanov M.A., Mager O.V., Mager P.N., et al. Properties of frequency distribution of Pc5-range pulsations observed with the Ekaterinburg Decameter Radar in the nightside ionosphere. J. Atmos. Solar-Terr. Phys. 2018. Vol. 167. P. 177-183. DOI:https://doi.org/10.1016/j.jastp.2017.12.002.

48. Chen L., Cowley S.C. On field line resonances of hydromagnetic Alfvén waves in dipole magnetic field. Geophys. Res. Lett. 1989. Vol. 16. P. 895-897. DOI:https://doi.org/10.1029/GL016i008p00895.

49. Chen L., Hasegawa A. A theory of long period magnetic pulsation: 1. Steady state excitation of a field line resonance. J. Geophys. Res. 1974. Vol. 79. P. 1024-1032. DOI:https://doi.org/10.1029/JA079i007p01024.

50. Chen L., Hasegawa A. Kinetic theory of geomagnetic pulsations: 1. Internal excitations by energetic particles. J. Geophys. Res. 1991. Vol. 96. P. 1503-1512. DOI:https://doi.org/10.1029/90JA02346.

51. Chen L., Hasegawa A. Kinetic theory of geomagnetic pulsations: 2. Ion flux modulations by transverse waves. J. Geophys. Res. 1994. Vol. 99. P. 179-182. DOI:https://doi.org/10.1029/93JA02774.

52. Cheng C.Z., Lin C.S. Eigenmode analysis of compressional waves in the magnetosphere. Geophys.l Res. Lett. 1987. Vol. 14, no. 8. P. 884-887. DOI:https://doi.org/10.1029/GL014i008p00884.

53. Cheng C.Z., Qian Q. Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. J. Geophys. Res. 1994. Vol. 99, no. A6. P. 11193-11209. DOI:https://doi.org/10.1029/94JA00657.

54. Cheremnykh O.K., Parnowski A.S. The theory of ballooning perturbations in the inner magnetosphere of the Earth. Adv. Space Res. 2004. Vol. 33. P. 769-773. DOI:https://doi.org/10.1016/S0273-1177(03)00642-2.

55. Chisham G., Orr D., Yeoman T.K. Observations of a giant pulsation across an extended array of ground magnetometers and on auroral radar. Planetary and Space Sci. 1992. Vol. 40. P. 953-964. DOI:https://doi.org/10.1016/0032-0633(92)90135-B.

56. Choi J., Lee D.-H. On the persistent poloidal Alfvén waves. Geophys. Res. Lett. 2021. Vol. 48, no. 12. DOI:https://doi.org/10.1029/2021GL092945.

57. Claudepierre S.G., Mann I.R., Takahashi K., et al. Van Allen Probes observation of localized drift resonance between poloidal mode ultra-low frequency waves and 60 keV electrons. Geophys. Res. Lett. 2013. Vol. 40. P. 4491-4497. DOI:https://doi.org/10.1002/grl.50901.

58. Cooper M.B., Gerrard A.J., Lanzerotti L.J., et al. Mirror instabilities in the inner magnetosphere and their potential for localized ULF wave generation. J. Geophys. Res.: Space Phys. 2021. Vol. 126, no. 2. DOI:https://doi.org/10.1029/2020JA028773.

59. Crabtree C., Chen L. Finite gyroradius theory of drift compressional modes. Geophys. Res. Lett. 2004. Vol. 31, no. L17804. DOI:https://doi.org/10.1029/2004GL020660.

60. Crabtree C., Horton W., Wong H.V., van Dam J.W. Bounce-averaged stability of compressional modes in geotail flux tubes. J. Geophys. Res. 2003. Vol. 108. P. 1084. DOI:https://doi.org/10.1029/2002JA009555.

61. Cummings W.D., O’Sullivan R.J., Coleman P.J., Jr. Standing Alfvén waves in the magnetosphere. J. Geophys. Res. 1969. Vol. 74 P. 778. DOI:https://doi.org/10.1029/JA074i003p00778.

62. Da Silva L.A., Shi J., Alves L.R., et al. High-energy electron flux enhancement pattern in the outer radiation belt in response to the Alfvénic fluctuations within high-speed solar wind stream: A statistical analysis. J. Geophys. Res.: Space Phys. 2021. Vol. 126, no. 8. DOI:https://doi.org/10.1029/2021JA029363.

63. Dai L., Takahashi K., Wygant J.R., et al. Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction. Geophys. Res. Lett. 2013. Vol. 40. P. 4127-4132. DOI:https://doi.org/10.1002/grl.50800.

64. Degeling A.W., Rankin R., Kabin K., et al. The effect of ULF compressional modes and field line resonances on relativistic electron dynamics. Planetary and Space Sci. 2007. Vol. 55, no. 6. P. 731-742. DOI:https://doi.org/10.1016/j.pss.2006.04.039.

65. Degeling A.W., Ozeke L.G., Rankin R., et al. Drift resonant generation of peaked relativistic electron distributions by Pc5 ULF waves. J. Geophys. Res.: Space Phys. 2008. Vol. 113, no. A2. CiteID A02208. DOI:https://doi.org/10.1029/2007JA012411.

66. Degeling A.W., Rankin R., Wang Y., et al. Alteration of particle drift resonance dynamics near poloidal mode field line resonance structures. J. Geophys. Res.: Space Phys. 2019. Vol. 124, no. 9. P. 7385-7401. DOI:https://doi.org/10.1029/2019JA026946.

67. Degtyarev V.I., Kharchenko I.P., Potapov A.S., et al. Qualitative estimation of magnetic storm efficiency in producing relativistic electron flux in the Earth’s outer radiation belt using geomagnetic pulsations data. Adv. Space Res. 2009. Vol. 43. P. 829-836. DOI:https://doi.org/10.1016/j.asr.2008.07.004.

68. Demekhov A.G. Recent progress in understanding Pc1 pearl formation. J. Atmos. Solar-Terr. Phys. 2007. Vol. 69. P. 1599-1774. DOI:https://doi.org/10.1016/j.jastp.2007.01.014.

69. Drozdov A.Y., Allison H.J., Shprits Y.Y., et al. A com-parison of radial diffusion coefficients in 1D and 3D long-term radiation belt simulations. J. Geophys. Res.: Space Phys. 2021. Vol. 126, no. 8. DOI:https://doi.org/10.1029/2020JA028707.

70. Dungey J.W., Electrodynamics of the outer atmosphere. Penn. State Univ. Ionos. Res. Lab. Sci. Rept. 1954. No. 69. pp. 1-52.

71. Dungey J.W. Effects of electromagnetic perturbations on particles trapped in the radiation belts. Space Sci. Rev. 1964. Vol. 4. P. 199-222. DOI:https://doi.org/10.1007/BF00173882.

72. Elkington S.R. A review of ULF interactions with radiation belt electrons. Magnetospheric ULF Waves: Synthesis and New Directions. 2006. Vol. 169. P. 177. DOI:https://doi.org/10.1029/169GM12.

73. Elkington S.R., Sarris T.E. The role of Pc5 ULF waves in the radiation belts: Current understanding and open questions. Waves, Particles, and Storms in Geospace. Eds. Balasis G., Daglis I.A., Mann I.R. Vol. 169. Oxford University Press, 2016. P. 177. DOI:https://doi.org/10.1093/acprof:oso/9780198705246.003.0005.

74. Elkington S.R., Hudson M.K., Chan A.A. Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc5 ULF oscillations. Geophys. Res. Lett. 1999. Vol. 26, no. 21. P. 3273-3276. DOI:https://doi.org/10.1029/1999GL003659.

75. Elkington S.R., Hudson M.K., Chan A.A. Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J. Geophys. Res. 2003. Vol. 108, iss. A3. DOI:https://doi.org/10.1029/2001JA009202.

76. Fälthammar C.-G. Effects of time-dependent electric fields on geomagnetically trapped radiation. J. Geophys. Res. 1965. Vol. 70, no. 11. P. 2503-2516. DOI:https://doi.org/10.1029/JZ070i011p02503.

77. Fälthammar C.-G. Radial diffusion by violation of the third adiabatic invariant. Earth’s Particles and Fields. Eds. McCormac B.M. 1968. P. 157.

78. Fei Y., Chan A.A., Elkington S.R., Wiltberger M.J. Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm. J. Geophys. Res.: Space Phys. 2006. Vol. 111, iss. A12. DOI:https://doi.org/10.1029/2005JA011211.

79. Feygin F.Z., Khabazin Yu.G. Slow drift mirror kinetic instability at a finite electron temperature in a nonmaxwellian space plasma. Geomagnetism and Aeronomy. 2014. Vol. 54, no. 6. P. 727-734. DOI:https://doi.org/10.1134/S0016793214060103.

80. Foster J.C., Wygant J.R., Hudson M.K., et al. Shock-induced prompt relativistic electron acceleration in the inner magnetosphere. J. Geophys. Res.: Space Phys. 2015. Vol. 120, no. 3. P. 1661-1674. DOI:https://doi.org/10.1002/2014JA020642.

81. Glassmeier K.-H. Reply to the comment by I.R. Mann and G. Chisham. Ann. Geophys. 2000. Vol. 18. P. 167-169. DOI:https://doi.org/10.1007/s00585-000-0167-y.

82. Glassmeier K.-H., Buchert S., Motschmann U., et al. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities. Ann. Geophys. 1999. Vol. 17. P. 338-350. DOI:https://doi.org/10.1007/s00585-999-0338-4.

83. Hamlin D.A., Karplus R., Vik R.C., Watson K.M. Mirror and azimuthal drift frequencies for geomagnetically trapped particles. J. Geophys. Res. 1961. Vol. 66, no. 1. P. 1-4. DOI:https://doi.org/10.1029/JZ066i001p00001.

84. Hao Y.X., Zong Q.-G., Wang Y.F., et al. Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail. J. Geophys. Res.: Space Phys. 2014. Vol. 119. P. 8262-8273. DOI:https://doi.org/10.1002/2014JA020023.

85. Hao Y.X., Zong Q.-G., Zhou X.-Z., et al. Global-scale ULF waves associated with SSC accelerate magnetospheric ultrarelativistic electrons. J. Geophys. Res.: Space Phys. 2019. Vol. 124, no. 3. P. 1525-1538. DOI:https://doi.org/10.1029/2018JA026134.

86. Hasegawa A. Drift mirror instability of the magnetosphere. Physics of Fluids. 1969. Vol. 12. P. 2642-2650. DOI:https://doi.org/10.1063/1.1692407.

87. Higuchi T., Kokubun S. Waveform and polarization of compressional Pc5 waves at geosynchronous orbit. J. Geophys. Res. 1988. Vol. 93. P. 14433-14443. DOI:https://doi.org/10.1029/JA093iA12p14433.

88. Huba J.D., Drake J.F. Physical mechanism of wave-particle resonances in an inhomogeneous magnetic field. I. Linear theory. Physics of Fluids. 1981. Vol. 24. P. 1650-1654. DOI:https://doi.org/10.1063/1.863588.

89. Huba J.D., Drake J.F. Physical mechanism of wave-particle resonances in a curved magnetic field. Physics of Fluids. 1982. Vol. 25. P. 1207-1210. DOI:https://doi.org/10.1063/1.863891.

90. Hudson M.K., Elkington S.R., Lyon J.G., et al. Simulation of radiation belt dynamics driven by solar wind variations. Sun-Earth Plasma Connections. 1999. American Geophysical Union (AGU). P. 171-182. DOI:https://doi.org/10.1029/GM109p0171.

91. Hughes W.J., Southwood D.J., Mauk B., et al. Alfvén waves generated by an inverted plasma energy distribution. Nature. 1978. Vol. 275. P. 43-45. DOI:https://doi.org/10.1038/275043a0.

92. Hughes W.J., McPherron R.L., Barfield J.N., Mauk B.H. A compressional Pc4 pulsation observed by three satellites in geostationary orbit near local midnight. Planetary and Space Sci. 1979. Vol. 27. P. 821-840. DOI:https://doi.org/10.1016/0032-0633(79)90010-2.

93. James M.K., Yeoman T.K., Mager P.N, Klimushkin D.Yu. The spatio-temporal characteristics of ULF waves driven by substorm injected particles. J. Geophys. Res.: Space Phys. 2013. Vol. 118. P. 1737-1749. DOI:https://doi.org/10.1002/jgra.50131.

94. Karpman V.I., Meerson B.I., Mikhailovsky A.B., Pokhotelov O.A. The effects of bounce resonances on wave growth rates in the magnetosphere. Planetary and Space Sci. 1977. Vol. 25. P. 573-585. DOI:https://doi.org/10.1016/0032-0633(77)90064-2.

95. Klimushkin D.Yu. Resonators for hydromagnetic waves in the magnetosphere. J. Geophys. Res. 1998. Vol. 103. P. 2369-2375. DOI:https://doi.org/10.1029/97JA02193.

96. Klimushkin D.Yu. The propagation of high-m Alfvén waves in the Earth’s magnetosphere and their interaction with high-energy particles. J. Geophys. Res. 2000. Vol. 105. P. 23,303-23,310. DOI:https://doi.org/10.1029/1999JA000396.

97. Klimushkin D.Yu., Chen L. Eigenmode stability analysis of drift-mirror modes in nonuniform plasmas. Ann. Geophys. 2006. Vol. 24, no. 10. P. 2435-2439. DOI:https://doi.org/10.5194/angeo-24-2435-2006.

98. Klimushkin D.Yu., Mager P.N. The spatio-temporal structure of impulse-generated azimuthal small-scale Alfvén waves interacting with high-energy charged particles in the magnetosphere. Ann. Geophys. 2004. Vol. 22. P. 1053-1060. DOI:https://doi.org/10.5194/angeo-22-1053-2004.

99. Klimushkin D.Yu., Mager P.N. Spatial structure and stability of coupled Alfvén and drift compressional modes in non-uniform magnetosphere: Gyrokinetic treatment. Planetary and Space Sci. 2011. Vol. 59. P. 1613-1620. DOI:https://doi.org/10.1016/j.pss.2011.07.010.

100. Klimushkin D.Yu., Kostarev D.V. Two kinds of mirror modes in a nonzero electron-temperature plasma. Plasma Physics and Controlled Fusion. 2012. Vol. 54, no. 9. P. 092001. DOI:https://doi.org/10.1088/0741-3335/54/9/092001.

101. Klimushkin D.Yu., Mager P.N. Coupled Alfvén and drift-mirror modes in non-uniform space plasmas: A gyrokinetic treatment. Plasma Physics and Controlled Fusion. 2012. Vol. 54, no. 1. P. 015006. DOI:https://doi.org/10.1088/0741-3335/54/1/015006.

102. Klimushkin D.Yu., Leonovich A.S., Mazur V.A. On the propagation of transversally small-scale standing Alfvén waves in a three-dimensionally inhomogeneous magnetosphere. J. Geo-phys. Res. 1995. Vol. 100. P. 9527-9534. DOI:https://doi.org/10.1029/94JA03233.

103. Klimushkin D.Yu., Mager P.N., Glassmeier K.-H. Toroidal and poloidal Alfvén waves with arbitrary azimuthal wave numbers in a finite pressure plasma in the Earth’s magnetosphere. Ann. Geophys. 2004. Vol. 22. P. 267-288. DOI:https://doi.org/10.5194/angeo-22-267-2004.

104. Klimushkin D.Yu., Mager P.N., Pilipenko V.A. On the ballooning instability of the coupled Alfvén and drift compressional modes. Earth, Planets, and Space. 2012. Vol. 64. P. 777-781. DOI:https://doi.org/10.5047/eps.2012.04.002.

105. Kostarev D.V., Mager P.N., Klimushkin D.Yu. Alfvén wave parallel electric field in the dipole model of the magnetosphere: gyrokinetic treatment. J. Geophys. Res.: Space Phys. 2021, vol. 126(2), pp. e2020JA028611. DOI:https://doi.org/10.1029/2020JA028611.

106. Kozyreva O., Pilipenko V., Engebretson M.J., et al. In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planetary and Space Sci. 2007. Vol. 55, no. 6. P. 755-769. DOI:https://doi.org/10.1016/j.pss.2006.03.013.

107. Lanzerotti L.J., Hasegawa A., Maclennan C.G. Drift mirror instability in the magnetosphere: Particle and field oscillations and electron heating. J. Geophys. Res. 1969. Vol. 74, no. 24. P. 5565-5578. DOI:https://doi.org/10.1029/JA074i024p05565.

108. Le G., Chi P.J., Strangeway R.J., et al. Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm. Geophys. Res. Lett. 2017. Vol. 44. P. 3456-3464. DOI:https://doi.org/10.1002/2017GL073048.

109. Lejosne S. Analytic expressions for radial diffusion. J. Geophys. Res.: Space Phys. 2019. Vol. 124, no. 6. P. 4278-4294. DOI:https://doi.org/10.1029/2019JA026786.

110. Lejosne S., Kollmann P. Radiation belt radial diffusion at Earth and beyond. Space Sci. Rev. 2020. Vol. 216, no. 1. P. 19. DOI:https://doi.org/10.1007/s11214-020-0642-6.

111. Leonovich A.S., Mazur V.A. A theory of transverse small-scale standing Alfvén waves in an axially symmetric magnetosphere. Planetary and Space Sci. 1993. Vol. 41. P. 697-717. DOI:https://doi.org/10.1016/0032-0633(93)90055-7.

112. Leonovich A.S., Mazur V.A. Magnetospheric resonator for transverse small-scale standing Alfvén waves. Planetary and Space Sci. 1995. Vol. 43. P. 881-883. DOI:https://doi.org/10.1016/0032-0633(94)00206-7.

113. Leonovich A.S., Mazur V.A. Penetration to the Earth’s surface of standing Alfvén waves excited by external currents in the ionosphere. Ann. Geophys. 1996. Vol. 14. P. 545-556. DOI:https://doi.org/10.1007/s00585-996-0545-1.

114. Leonovich A.S., Mazur V.A. Standing Alfvén waves in an axisymmetric magnetosphere excited by a non-stationary source. Ann. Geophys. 1998. Vol. 16. P. 914-920. DOI:https://doi.org/10.1007/s00585-998-0914-z.

115. Leonovich A.S., Klimushkin D.Yu., Mager P.N. Experimental evidence for the existence of monochromatic transverse small-scale standing Alfvén waves with spatially dependent polarization. J. Geophys. Res.: Space Phys. 2015. Vol. 120. P. 5443-5454. DOI:https://doi.org/10.1002/2015JA021044.

116. Li L., Cao J., Zhou G. Combined acceleration of electrons by whistler-mode and compressional ULF turbulences near the geosynchronousorbit. J. Geophys. Res.: Space Phys. 2005. Vol. 110, no. A3. DOI:https://doi.org/10.1029/2004JA010628.

117. Lin C.S., Parks G.K. The coupling of Alfvén and compressional waves. J. Geophys. Res. 1978. Vol. 83, no. A6. P. 2628-2636. DOI:https://doi.org/10.1029/JA083iA06p02628.

118. Lin N., McPherron R.L., Kivelson M.G., Williams D.J. An unambiguous determination of the propagation of a compressional Pc5 wave. J. Geophys. Res. 1988. Vol. 93, no. A6. P. 5601-5612. DOI:https://doi.org/10.1029/JA093iA06p05601.

119. Liu W.W., Rostoker G., Baker D.N. Internal acceleration of relativistic electrons by large-amplitude ULF pulsations. J. Geophys. Res.: Space Phys. 1999. Vol. 104, no. A8. P. 17391-17407. DOI:https://doi.org/10.1029/1999JA900168.

120. Liu W., Cao J.B., Li X., Sarris T.E., et al. Poloidal ULF wave observed in the plasmasphere boundary layer. J. Geophys. Res.: Space Phys. 2013. Vol. 118, no. 7. P. 4298-4307. DOI:https://doi.org/10.1002/jgra.50427.

121. Loto’aniu T.M., Mann I.R., Ozeke L.G., et al. Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J. Geophys. Res.: Space Phys. 2006. Vol. 111, iss. A4. CiteID A04218. DOI:https://doi.org/10.1029/2005JA011355.

122. Mager O.V. Alfvén waves generated through the drift-bounce resonant instability in the ring current: A THEMIS multi-spacecraft case study. J. Geophys. Res.: Space Phys. 2021. Vol. 126, iss. 11. e2021JA029241. DOI:https://doi.org/10.1029/2021JA029241.

123. Mager O.V., Chelpanov M.A., Mager P.N., et al. Conjugate ionosphere-magnetosphere observations of a sub-Alfvénic compressional intermediate-m wave: A case study using EKB Radar and van Allen Probes. J. Geophys. Res.: Space Phys. 2019. Vol. 124, no. 5. P. 3276-3290. DOI:https://doi.org/10.1029/2019JA026541.

124. Mager P.N., Klimushkin D.Yu. Spatial localization and azimuthal wave numbers of Alfvén waves generated by drift-bounce resonance in the magnetosphere. Ann. Geophys. 2005. Vol. 23. P. 3775-3784. DOI:https://doi.org/10.5194/angeo-23-3775-2005.

125. Mager P.N., Klimushkin D.Yu. Alfvén ship waves: high-m ULF pulsations in the magnetosphere, generated by a moving plasma inhomogeneity. Ann. Geophys. 2008. Vol. 26. P. 1653-1663. DOI:https://doi.org/10.5194/angeo-26-1653-2008.

126. Mager P.N., Klimushkin D.Yu. Giant pulsations as modes of a transverse Alfvénic resonator on the plasmapause. Earth, Planets and Space. 2013. Vol. 65. P. 397-409. DOI:https://doi.org/10.5047/eps.2012.10.002.

127. Mager P.N., Klimushkin D.Yu. Non-resonant instability of coupled Alfvén and drift compressional modes in magnetospheric plasma. Plasma Physics and Controlled Fusion. 2017. Vol. 59, no. 9. P. 095005. DOI:https://doi.org/10.1088/1361-6587/aa790c.

128. Mager P.N., Klimushkin D.Yu. The field line resonance in the three-dimensionally inhomogeneous magnetosphere: Principal features. J. Geophys. Res.: Space Phys. 2021. Vol. 126, no. 1. DOI:https://doi.org/10.1029/2020JA028455.

129. Mager P.N., Klimushkin D.Yu., Kostarev D.V. Drift-compressional modes generated by inverted plasma distributions in the magnetosphere. J. Geophys. Res.: Space Phys. 2013. Vol. 118. P. 4915-4923. DOI:https://doi.org/10.1002/jgra.50471.

130. Mager P.N., Berngardt O.I., Klimushkin D.Yu., et al. First results of the high-resolution multibeam ULF wave experiment at the Ekaterinburg SuperDARN radar: Ionospheric signatures of coupled poloidal Alfvén and drift-compressional modes. J. Atmos. Solar-Terr. Phys. 2015. Vol. 130-131. P. 112-126. DOI:https://doi.org/10.1016/j.jastp.2015.05.017.

131. Mager P.N., Mikhailova O.S., Mager O.V., Klimushkin D.Yu. Eigenmodes of the transverse Alfvénic resonator at the plasmapause: A van Allen probes case study. Geophys. Res. Lett. 2018. Vol. 45. P. 10,796-10,804. DOI:https://doi.org/10.1029/2018GL079596.

132. Mann I.R., Chisham G. Comment on “Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities” by K.-H. Glassmeier et al. Ann. Geophys. 1999. Vol. 17. P. 338-350. Ann. Geophys. 2000. Vol. 18. P. 161-166. DOI:https://doi.org/10.1007/s00585-000-0161-4.

133. Mann I.R., Wright A.N. Finite lifetimes of ideal poloidal Alfvén waves. J. Geophys. Res. 1995. Vol. 100. P. 23677-23686. DOI:https://doi.org/10.1029/95JA02689.

134. Mann I.R., Murphy K.R., Ozeke L.G., et al. The role of ultralow frequency waves in radiation belt dynamics. Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere. 2012. American Geophysical Union (AGU). P. 69-92. DOI:https://doi.org/10.1029/2012GM001349.

135. Mann I.R., Lee E.A., Claudepierre S.G., et al.. Discovery of the action of a geophysical synchrotron in the Earth’s van Allen radiation belts. Nature Communications. 2013. Vol. 4. P. 2795. DOI:https://doi.org/10.1038/ncomms3795.

136. Mathie R.A., Mann I.R. A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett. 2000. Vol. 27, no. 20. P. 3261-3264. DOI:https://doi.org/10.1029/2000GL003822.

137. Mathie R.A., Mann I.R. On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt. J. Geophys. Res.: Space Phys. 2001. Vol. 106, no. A12. P. 29783-29796. DOI:https://doi.org/10.1029/2001JA000002.

138. Migliuolo S. High-m theory of low-frequency magnetic pulsations. J. Geophys. Res. 1983. Vol. 88, no. A3. P. 2065-2074. DOI:https://doi.org/10.1029/JA088iA03p02065.

139. Min K., Takahashi K., Ukhorskiy A.Y., et al. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector. J. Geophys. Res.: Space Phys. 2017. Vol. 122, no. 3. P. 3013-3039. DOI:https://doi.org/10.1002/2016JA023770.

140. Moiseev A.V., Baishev D.G., Mullayarov V.A., et al. The development of compression long-period pulsations on the recovery phase of the magnetic storm on May 23, 2007. Cosmic Res. 2016. Vol. 54. P. 31-39. DOI:https://doi.org/10.1134/S0010952516010123.

141. Motoba T., Takahashi K., Ukhorskiy A., et al. Link between premidnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a van Allen Probe spacecraft and a THEMIS all-sky imager. J. Geophys. Res. 2015. Vol. 120. P. 1814-1831. DOI:https://doi.org/10.1002/2014JA020863.

142. Ng P.H., Patel V.L. The coupling of shear Alfvén and compressional waves in high-m magnetospheric plasma. J. Geophys. Res. 1983. Vol. 88, no. A12. P. 10035-10040. DOI:https://doi.org/10.1029/JA088iA12p10035.

143. Ng P.H., Patel V.L., Chen S. Drift compressional instability in the magnetosphere. J. Geophys. Res. 1984. Vol. 89. P. 10763-10769. DOI:https://doi.org/10.1029/JA089iA12p10763.

144. O’Brien, T.P., Lorentzen K.R., Mann I.R., et al. Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration. J. Geophys. Res.: Space Phys. 2003. Vol. 108, iss. A8. DOI:https://doi.org/10.1029/2002JA009784.

145. Oimatsu S., Nosé M., Takahashi K., et al. Van Allen probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave. J. Geophys. Res.: Space Phys. 2018. Vol. 123, no. 5. P. 3421-3435. DOI:https://doi.org/10.1029/2017JA025087.

146. Ozeke L.G., Mann I.R., Murphy K.R., et al. ULF wave derived radiation belt radial diffusion coefficients. J. Geophys. Res. 2012. Vol. 117, A04222. DOI:https://doi.org/10.1029/2011JA017463.

147. Ozeke L.G., Mann I.R., Murphy K.R., et al. Analytic expressions for ULF wave radiation belt radial diffusion coefficients. J. Geophys. Res.: Space Phys. 2014. Vol. 119. P. 1587-1605. DOI:https://doi.org/10.1002/2013JA019204.

148. Ozeke L.G., Mann I.R., Murphy K.R., et al. Explaining the apparent impenetrable barrier to ultra-relativistic electrons in the outer van Allen belt. Nature Communications. 2018. Vol. 9. P. 1844. DOI:https://doi.org/10.1038/s41467-018-04162-3.

149. Pilipenko V., Kleimenova N., Kozyreva O., et al. Long-period magnetic activity during the May 15, 1997 storm. J. Geophys. Res.: Space Phys. 2001. Vol. 63. P. 489-501. DOI:https://doi.org/10.1016/S1364-6826(00)00189-9.

150. Pilipenko V.A., Klimushkin D.Yu., Mager P.N., et al. Generation of resonant Alfv´en waves in the auroral oval. Ann. Geophys. 2016. Vol. 34, no. 2. P. 241-248. DOI:https://doi.org/10.5194/angeo-34-41-2016.

151. Pokhotelov O.A., Pilipenko V.A., Amata E. Drift anisotropy instability of a finite-beta magnetospheric plasma. Planetary and Space Sci. 1985. Vol. 33. P. 1229-1241. DOI:https://doi.org/10.1016/0032-0633(85)90001-7.

152. Pokhotelov O.A., Balikhin M.A., Alleyne H.S.-C.K., Onishchenko O.G. Mirror instability with finite electron temperature effects. J. Geophys. Res. 2000a Vol. 105. P. 2393-2402. DOI:https://doi.org/10.1029/1999JA900351.

153. Pokhotelov O.A., Khabazin Y.G., Mann I.R., et al. Giant pulsations: A nonlinear phenomenon. J. Geophys. Res.: Space Phys. 2000b. Vol. 105, iss.. A5. P. 10691-10702. DOI:https://doi.org/10.1029/1999JA900506.

154. Pokhotelov O.A., Balikhin M.A., Sagdeev R.Z., Treumann R.A. Halo and mirror instabilities in the presence of finite Larmor radius effects. J. Geophys. Res.: Space Phys. 2005. Vol. 110, iss. A10. DOI:https://doi.org/10.1029/2004JA010933.

155. Potapov A.S. ULF wave activity in high-speed streams of the solar wind: Impact on the magnetosphere. J. Geophys. Res.: Space Phys. 2013. Vol. 118. P. 6465-6477. DOI:https://doi.org/10.1002/2013JA019119.

156. Potapov A., Guglielmi A., Tsegmed B., Kultima J. Global Pc5 event during 29-31 October 2003 magnetic storm. Adv. Space Res. 2006. Vol. 38, no. 8. P. 1582-1586. DOI:https://doi.org/10.1016/j.asr.2006.05.010.

157. Potapov A.S., Amata E., Polyushkina T.N., et al. A case study of global ULF pulsations using data from space borne and ground-based magnetometers and a SuperDARN radar. Kosmichna Nauka i Tekhnologia. 2011. Vol. 17, no. 6. P. 54-67. DOI:https://doi.org/10.15407/knit2011.06.054.

158. Potapov A.S., Polyushkina T.N., Pulyaev V.A. Observations of ULF waves in the solar corona and in the solar wind at the Earth’s orbit. J. Atmos. Solar-Terr. Phys. 2013. Vol. 102. P. 235-242. DOI:https://doi.org/10.1016/j.jastp.2013.06.001.

159. Radoski H.R. Highly asymmetric MHD resonances. The guided poloidal mode. J. Geophys. Res. 1967. Vol. 72. P. 4026-4033. DOI:https://doi.org/10.1029/JZ072i015p04026.

160. Radoski H.R. A theory of latitude dependent geomagnetic micropulsations: the asymptotic fields. J. Geophys. Res. 1974. Vol. 79. P. 595-613. DOI:https://doi.org/10.1029/JA079i004p00595.

161. Rae I.J., Mann I.R., Watt C.E.J., et al. Equator-S observations of drift mirror mode waves in the dawnside magnetosphere. J. Geophys. Res. 2007. Vol. 112, iss. A11. DOI:https://doi.org/10.1029/2006JA012064.

162. Rankin R., Wang C.R., Wang Y.F., et al. Ultra-low-frequency wave-particle interactions in Earth’s outer radiation belt. Dayside Magnetosphere Interactions. 2020. American Geophysical Union (AGU). Ch. 11. P. 189-205. DOI:https://doi.org/10.1002/9781119509592.

163. Ren J., Zong Q.G., Zhou X.Z., et al. Interaction of ULF waves with different ion species: Pitch angle and phase space density implications. J. Geophys. Res.: Space Phys. 2016. Vol. 121, no. 10. P. 9459-9472. DOI:https://doi.org/10.1002/2016JA022995.

164. Ren J., Zong Q.G., Zhou X.Z., et al. Phase relationship between ULF waves and drift-bounce resonant ions: A statistical study. J. Geophys. Res.: Space Phys. 2017. Vol. 122. P. 7087-7096. DOI:https://doi.org/10.1002/2016JA023848.

165. Ren J., Zong Q.G., Zhou X.Z., et al. Cold plasmaspheric electrons affected by ULF waves in the inner magnetosphere: a van Allen Probes statistical study. J. Geophys. Res.: Space Phys. 2019. Vol. 124. P. 7954-7965. DOI:https://doi.org/10.1029/2019JA027009.

166. Romanova N., Pilipenko V. ULF wave indices to characterize the solar wind-magnetosphere interaction and relativistic electron dynamics. Acta Geophysica. 2009. Vol. 57, no. 1. P. 158-170. DOI:https://doi.org/10.2478/s11600-008-0064-4.

167. Rostoker G., Skone S., Baker D.N. On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophys. Res. Lett. 1998. Vol. 25, no. 19. P. 3701-3704. DOI:https://doi.org/10.1029/98GL02801.

168. Rubtsov A.V., Agapitov O.V., Mager P.N., et al. Drift resonance of compressional ULF waves and substorm-injected protons from multipoint THEMIS measurements. J. Geophys. Res.: Space Phys. 2018. Vol. 123, no. 11. P. 9406-9419. DOI:https://doi.org/10.1029/2018JA025985.

169. Rubtsov A.V., Mikhailova O.S., Mager P.N., et al. Multispacecraft observation of the presubstorm long-lasting poloidal ULF wave. Geophys. Res. Lett. 2021. Vol. 48, iss. 23. e2021GL096182. DOI:https://doi.org/10.1029/2021GL096182.

170. Saka O., Iijima T., Yamagishi H., et al. Excitation of Pc5 pulsations in the morning sector by a local injection of particles in the magnetosphere. J. Geophys. Res. 1992. Vol. 97. P. 10,693-10,701. DOI:https://doi.org/10.1029/92JA00441.

171. Saka O., Watanabe O., Baker D.N. A possible driving source for transient field line oscillations in the postmidnight sector at geosynchronous altitudes. J. Geophys. Res. 1996. Vol. 101. P. 24,719-24,726. DOI:https://doi.org/10.1029/96JA02039.

172. Sandhu J.K., Rae I.J., Wygant J.R., et al. ULF wave driven radial diffusion during geomagnetic storms: A statistical analysis of van Allen Probes observations. J. Geophys. Res.: Space Phys. 2021. Vol. 126, no. 4. DOI:https://doi.org/10.1029/2020JA029024.

173. Sarris T.E., Wright A.N., Li X. Observations and analysis of Alfvén wave phase mixing in the Earth’s magnetosphere. J. Geophys. Res.: Space Phys. 2009. Vol. 114, A03218. P. 3218. DOI:https://doi.org/10.1029/2008JA013606.

174. Schulz M., Lanzerotti L.J. Particle Diffusion in the Radiation Belts. Berlin, Heidelberg, New York: Springer-Verlag. 1974. 236 p.

175. Shprits Y.Y., Elkington S.R., Meredith N.P., Subbotin D.A. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt. I: Radial transport. J. Atmos. Solar-Terr. Phys. 2008. Vol. 70, no. 14. P. 1679-1693. DOI:https://doi.org/10.1016/j.jastp.2008.06.008.

176. Simms L.E., Engebretson M.J., Rodger C.J., et al. The combined influence of lower band chorus and ULF waves on radiation belt electron fluxes at individual L-shells. J. Geophys. Res.: Space Phys. 2021. Vol. 126, no. 5. DOI:https://doi.org/10.1029/2020JA028755.

177. Southwood D.J. Preservation of the second adiabatic invariant during cross L diffusion. J. Geophys. Res. 1972. Vol. 77, no. 7. P. 1123-1127. DOI:https://doi.org/10.1029/JA077i007p01123.

178. Southwood D.J. The behaviour of ULF waves and particles in the magnetosphere. Planetary and Space Sci. 1973. Vol. 21. P. 53-65. DOI:https://doi.org/10.1016/0032-0633(73)90019-6.

179. Southwood D.J. Some features of field line resonances in the magnetosphere. Planetary and Space Sci. 1974. Vol. 22. P. 483-491. DOI:https://doi.org/10.1016/0032-0633(74)90078-6.

180. Southwood D.J. A general approach to low-frequency instability in the ring current plasma. J. Geophys. Res. 1976. Vol. 81. P. 3340-3348. DOI:https://doi.org/10.1029/JA081i019p03340.

181. Southwood D.J. Low frequency pulsation generation by energetic particles. J. Geomagnetism and Geoelectricity. Suppl. II. 1980. Vol. 32. P. 75-88.

182. Southwood D.J., Kivelson M.G. Charged particle behavior in low-frequency geomagnetic pulsations. 1. Transverse waves. J. Geophys. Res. 1981. Vol. 86, no. A7. P. 5643-5655. DOI:https://doi.org/10.1029/JA086iA07p05643.

183. Southwood D.J., Kivelson M.G. Charged particle behavior in low-frequency geomagnetic pulsations. 2. Graphical approach. J. Geophys. Res. 1982. Vol. 87. P. 1707-1710. DOI:https://doi.org/10.1029/JA087iA03p01707.

184. Southwood D.J., Dungey J.W., Etherington R.J. Bounce resonant interactions between pulsations and trapped particles. Planetary and Space Sci. 1969. Vol. 17. P. 349-361. DOI:https://doi.org/10.1016/0032-0633(69)90068-3.

185. Su S.-Y., Konradi A., Fritz T.A. On propagation direction of ring current proton ULF waves observed by ATS-6 at 6.6RE. J. Geophys. Res. 1977. Vol. 82, no. 13. P. 1859-1868. DOI:https://doi.org/10.1029/JA082i013p01859.

186. Su Z., Zhu H., Xiao F., Zong Q.-G., Zhou X.-Z., Zheng H., et al. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons. Nature Communications. 2015. Vol. 6. P. 10096. DOI:https://doi.org/10.1038/ncomms10096.

187. Tajiri M. Propagation of hydromagnetic waves in collisionless plasma. II. Kinetic approach. J. Phys. Society of Japan. 1967. Vol. 22, no. 6. P. 1482-1494. DOI:https://doi.org/10.1143/JPSJ.22.1482.

188. Takahashi K. New observations, new theoretical results and controversies regarding Pc3-5 waves. Adv. Space Res. 1996. Vol. 17, no. 10. P. 63-71. DOI:https://doi.org/10.1016/0273-1177(95)00696-C.

189. Takahashi K., Fennell J.F., Amata E., Higbie P.R. Field-aligned structure of the storm time Pc5 wave of November 14-15, 1979. J. Geophys. Res.: Space Phys. 1987. Vol. 92, no. A6. P. 5857-5864. DOI:https://doi.org/10.1029/JA092iA06p05857.

190. Takahashi K., McEntire R.W., Lui A.T.Y., Potemra T.A. Ion flux oscillations associated with a radially polarised transverse Pc5 magnetic pulsation. J. Geophys. Res. 1990. Vol. 95. P. 3717-3731. DOI:https://doi.org/10.1029/JA095iA04p03717.

191. Takahashi K., Claudepierre S.G., Rankin R., et al. Van Allen probes observation of a fundamental poloidal standing Alfvén wave event related to giant pulsations. J. Geophys. Res.: Space Phys. 2018a. Vol. 123. P. 4574-4593. DOI:https://doi.org/10.1029/2017JA025139.

192. Takahashi K., Oimatsu S., Nosé M., et al. Van Allen probes observations of second harmonic poloidal standing Alfvén waves. J. Geophys. Res.: Space Phys. 2018b. Vol. 123. P. 611-637. DOI:https://doi.org/10.1002/2017JA024869.

193. Tamao T. Interaction of energetic particles with HM-waves in the magnetosphere. Planetary and Space Sci. 1984a. Vol. 32. P. 1371-1386. DOI:https://doi.org/10.1016/0032-0633(84)90080-1.

194. Tamao T. Magnetosphere-ionosphere interaction through hydromagnetic waves. Achievements of the International Magnetospheric Study (IMS). Eds. B. Battrick, Rolfe E., Roederer J.G. Vol. 217. ESA Special Publ., 1984b. P. 427-435.

195. Tian A., Xiao K., Degeling A.W., et al. Reconstruction of plasma structure with anisotropic pressure: application to Pc5 compressional wave. Astrophys. J. 2020. Vol. 889, no. 1. P. 35. DOI:https://doi.org/10.3847/1538-4357/ab6296.

196. Tsurutani B.T., Lakhina G.S. Some basic concepts of wave-particle interactions in collisionless plasmas. Rev. Geophys. 1997. Vol. 35, no. 4. P. 491-501. DOI:https://doi.org/10.1029/97RG02200.

197. Ukhorskiy A.Y., Sitnov M.I. Radial transport in the outer radiation belt due to global magnetospheric compressions. J. Atmos. Solar-Terr. Phys. 2008. Vol. 70, no. 14. P. 1714-1726. DOI:https://doi.org/10.1016/j.jastp.2008.07.018.

198. Ukhorskiy A.Y., Anderson B.J., Takahashi K., Tsyganenko N.A. Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons. Geophys. Res. Lett. 2006. Vol. 33, no. 6. DOI:https://doi.org/10.1029/2005GL024380.

199. Ukhorskiy A.Y., Sitnov M.I., Takahashi K., Anderson B.J. Radial transport of radiation belt electrons due to stormtime Pc5 waves. Ann. Geophys. 2009. Vol. 27. P. 2173-2181. DOI:https://doi.org/10.5194/angeo-27-2173-2009.

200. Vaivads A., Baumjohann W., Georgescu E., et al. Correlation studies of compressional Pc5 pulsations in space and Ps6 pulsations on the ground. J. Geophys. Res.: Space Phys. 2001. Vol. 106, no. A12. P. 29797-29806. DOI:https://doi.org/10.1029/2001JA900042.

201. Vetoulis G., Chen L. Global structures of Alfvén ballooning modes in magnetospheric plasmas. Geophys. Res. Lett. 1994. Vol. 21. P. 2091-2094. DOI:https://doi.org/10.1029/94GL01703.

202. Walker A.D.M., Greenwald R.A., Korth A., Kremser G. STARE and GEOS-2 observations of a storm time Pc5 ULF pulsation. J. Geophys. Res. 1982. Vol. 87. P. 9135-9146. DOI:https://doi.org/10.1029/JA087iA11p09135.

203. Wang C., Rankin R., Zong Q. Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere. J. Geophys. Res.: Space Phys. 2015. Vol. 120. P. 2438-2451. DOI:https://doi.org/10.1002/2014JA020761.

204. Wang B., Zhang H., Liu Z., et al. Energy modulations of magnetospheric ions induced by foreshock transient-driven ultralow-frequency waves. Geophys. Res. Lett. 2021. Vol. 48, no. 10. DOI:https://doi.org/10.1029/2021GL093913.

205. Watson C., Jayachandran P.T., Singer H.J., et al. GPS TEC response to Pc4 “giant pulsations”. J. Geophys. Res.: Space Phys. 2016. Vol. 121, no. 2. P. 1722-1735. DOI:https://doi.org/10.1002/2015JA022253.

206. Wei C., Dai L., Duan S.-P., et al. Multiple satellites observation evidence: High-m poloidal ULF waves with time-varying polarization states. Earth and Planetary Phys. 2019. Vol. 3, no. 3. P. 190-203. DOI:https://doi.org/10.26464/epp2019021.

207. Woch J., Kremser G., Korth A., et al. Curvature-driven drift mirror instability in the magnetosphere». Planetary and Space Sci. 1988. Vol. 36. P. 383-393. DOI:https://doi.org/10.1016/0032-0633(88)90126-2.

208. Woch J., Kremser G., Korth A. A comprehensive investigation of compressional ULF waves observed in the ring current. J. Geophys. Res. 1990. Vol. 95. P. 15113-15132. DOI:https://doi.org/10.1029/JA095iA09p15113.

209. Wright D.M., Yeoman T.K., Rae I.J., et al. Ground-based and Polar spacecraft observations of a giant (Pg) pulsation and its associated source mechanism. J. Geophys. Res. 2001. Vol. 106. P. 10837-10852. DOI:https://doi.org/10.1029/2001JA900022.

210. Xia Z., Chen L., Zheng L., Chan A.A. Eigenmode analysis of compressional poloidal modes in a self-consistent magnetic field. J. Geophys. Res.: Space Phys. 2017. Vol. 122, iss. 10. P. 10.369-10.381. DOI:https://doi.org/10.1002/2017JA024376.

211. Yagova N.V., Pilipenko V.A., Sakharov Y.A., et al. Spatial scale of geomagnetic Pc5/Pi3 pulsations as a factor of their efficiency in generation of geomagnetically induced currents. Earth, Planets, and Space. 2021. Vol. 73, no. 1. P. 88. DOI:https://doi.org/10.1186/s40623-021-01407-2.

212. Yamakawa T., Seki K., Amano T., et al. Excitation of internally driven ULF waves by the drift-bounce resonance with ring current ions based on the drift-kinetic simulation. J. Geophys. Res.: Space Phys. 2020. Vol. 125, no. 11. Article id. e28231. DOI:https://doi.org/10.1029/2020JA028231.

213. Yamamoto K., Nose M., Keika K., et al. Eastward propagating second harmonic poloidal waves triggered by temporary outward gradient of proton phase space density: Van Allen ProbeA observation. J. Geophys. Res.: Space Phys. 2019. Vol. 124, no. 12. P. 9904-9923. DOI:https://doi.org/10.1029/2019JA027158.

214. Yang B., Zong Q.-G., Fu S.Y., et al. The role of ULF waves interacting with oxygen ions at the outer ring current during storm times. J. Geophys. Res.: Space Phys. 2011. Vol. 116, iss. A1. A01203. DOI:https://doi.org/10.1029/2010JA015683.

215. Yeoman T.K., Wright D.M., Chapman P.J., Stockton-Chalk A.B. High-latitude observations of ULF waves with large azimuthal wavenumbers. J. Geophys. Res. 2000. Vol. 105. P. 5453-5462. DOI:https://doi.org/10.1029/1999JA005081.

216. Yeoman T.K., Klimushkin D.Yu., Mager P.N. Intermediate-m ULF waves generated by substorm injection: a case study. Ann. Geophys. 2010. Vol. 28. P. 1499-1509. DOI:https://doi.org/10.5194/angeo-28-1499-2010.

217. Yeoman T.K., James M., Mager P.N., Klimushkin D.Yu. SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory. J. Geophys. Res. 2012. Vol. 117. A06231. DOI:https://doi.org/10.1029/2012JA017668.

218. Zhai C., Shi X., Wang W., et al. Characterization of high-m ULF wave signatures in GPS TEC data. Geophys. Res. Lett. 2021. Vol 48, no. 14. DOI:https://doi.org/10.1029/2021GL094282.

219. Zhou X.-Z., Wang Z.-H., Zong Q.-G., et al. Charged particle behavior in the growth and damping stages of ultralow frequency waves: Theory and van Allen Probes observations. J. Geophys. Res.: Space Phys. 2016. Vol. 121, no. 4. P. 3254-3263. DOI:https://doi.org/10.1002/2016JA022447.

220. Zolotukhina N.A., Mager P.N., Klimushkin D.Yu. Pc5 waves generated by substorm injection: a case study. Ann. Geophys. 2008. Vol. 26. P. 2053-2059. DOI:https://doi.org/10.5194/angeo-26-2053-2008.

221. Zong Q.-G., Zhou X.-Z., Wang Y.F., et al.. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J. Geophys. Res. 2009. Vol. 114, no. A10. P. 204. DOI:https://doi.org/10.1029/2009JA014393.

222. Zong Q.-G., Yuan C.J., Yang B., et al. Fast acceleration of “killer” electrons and energetic ions by interplanetary shock stimulated ULF waves in the inner magnetosphere. Chinese Sci. Bull. 2011. Vol. 56, no. 12. P. 1188. DOI:https://doi.org/10.1007/s11434-010-4308-8.

223. Zong Q.-G., Wang Y.F., Zhang H., et al. Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J. Geophys. Res. 2012. Vol. 117, iss. A11. P. 206. DOI:https://doi.org/10.1029/2012JA018024.

224. Zong Q.-G., Rankin R., Zhou X. The interaction of ultra-low-frequency Pc3-5 waves with charged particles in Earth’s magnetosphere. Rev. Modern Plasma Phys. 2017. Vol. 1, no. 1. P. 10. DOI:https://doi.org/10.1007/s41614-017-0011-4.

225. Zong Q.-G., Leonovich A.S., Kozlov D.A. Resonant Alfvén waves excited by plasma tube/shock front interaction. Physics of Plasmas. 2018. Vol. 25, no. 12. P. 122904. DOI:https://doi.org/10.1063/1.5063508.

Войти или Создать
* Забыли пароль?