ОЦЕНКА И ПРОГНОЗИРОВАНИЕ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГРУЗОВОГО ВАГОНА
Рубрики: ТРАНСПОРТ
Аннотация и ключевые слова
Аннотация (русский):
Выполнен синтез наработок вагона до первого отказа и между отказами. Определена наработка между отказами. Результаты выше проведенных исследований легли в основу графической модели надежности вагона. Получена зависимость периодичности проведения укрупненного текущего ремонта вагонов от средней наработки вагона между отказами.

Ключевые слова:
наработка, отказ, межремонтный период, ремонт, полувагон
Текст
Текст произведения (PDF): Читать Скачать

Введение

 

Если рассматривать модель функционирования грузового вагона с точки зрения теории надежности, то интерес представляют следующие показатели: число отцепок вагона в межремонтных периодах с течением срока службы, наработка вагона до первого отказа и наработка вагона между отказами. Исследования «поведения» вагона в межремонтных периодах показывают, что число текущих ремонтов в межремонтных периодах возрастает линейно с течением срока службы [1,2].

Действующая система планово-предупредительных ремонтов грузовых вагонов предусматривает два критерия постановки вагона в плановый ремонт: по предельной календарной продолжительности – 2 года, по предельному ресурсу (выполненной работе) – 160 тыс. км, по комбинированному критерию – по достижению предельного значения одним из показателей.

 

Оценка и прогнозирование технического состояния грузового вагона на этапах жизненного цикла

 

На полигоне Забайкальской железной дороге проведен эксперимент по определению средней наработки до отказа грузовых вагонов. Получен массив данных по числу отказов и наработкам вагонов до первой отцепки в текущий ремонт. Ниже приведены основные условия данного исследования [2,3]

  1. По роду подвижного состава для подконтрольной эксплуатации были выбраны полувагоны. Под наблюдение было поставлено 8645 полувагонов [3,4].
  2. Срок службы полувагонов на момент наблюдений составлял 10 – 12 лет.
  3. Статистическое выравнивание эмпирических данных проводилось на предположении (гипотезе) о нормальном распределении наработки вагона до первого отказа.

В результате обработки массива экспериментальных данных статистически было доказано, что в целом наработка до отказа вагона подчиняется нормальному закону распределения (рис. 1) [2,5].

 

 

Рис. 1.  Гистограмма распределения наработки полувагона до отказа

 

 

Основные характеристики нормального распределения времени работы грузовых вагонов до отказа, такие как плотность вероятности и параметр распределения определяются по формулам [6]:

                            

 

                              

Результаты расчетов показывают, что средняя наработка до отказа полувагона равна 85000 км. И как показывает практика — это событие можно считать достоверным, то есть которое обязательно произойдет [7].

Исследование наработки вагона между отказами представляет весьма трудоемкий процесс. Объясним почему: во-первых, необходимо располагать объемом выборочной совокупности грузовых вагонам по наработкам от первого отказа до второго отказа, от второго отказа – до третьего отказа и т.д.; во-вторых, выборочная совокупность вагонов должна соответствовать возрастному и техническому критериям (должна быть одного года выпуска, одного конструктивного исполнения); в-третьих, желательно, чтобы количество текущих ремонтов вагонов выборки в межремонтных периодах было одинаково.

Несмотря на сложность сбора и обработки массива экспериментальных данных, на полигоне Забайкальской ж.д. выполнено исследование по определению закона распределения наработки вагона между отказами.  Приведем основные условия эксперимента [8,9]:

  1. Объем выборки составил 5000 полувагонов;
  2. Время проведения наблюдения «Т» принято равным межремонтному периоду – 2 года;
  3. В учет наработки между отказами принималась наработка между текущими ремонтами вагона в межремонтном периоде;
  4. Статистическое выравнивание эмпирических данных проводилось на предположении (гипотезе) об экспоненциальном распределении наработки вагона между отказами. В результате статистических расчетов доказана гипотеза о распределении наработки вагона между отказами экспоненциальному распределению. 

 Порядок выравнивания представлен в табл. 1, гистограмма распределения эмпирических и теоретических частот наработки между отказами представлена на рис. 2.

 

Таблица 1

Порядок выравнивания эмпирических данных экспоненциальному закону распределения

Х1

Х2

W

M(X)

P(Xi)

P(Xi+1)

P(X)

0

10000

2750

0,55

2750

1

0,466912

0,533088

2665,44

2,600122

10000

20000

1250

0,25

3750

0,466912

0,218007

0,248905

1244,526

0,023973

20000

30000

550

0,11

2750

0,218007

0,10179

0,116217

581,084

1,756754

30000

40000

230

0,046

1610

0,10179

0,047527

0,054263

271,315

7,421449

40000

50000

120

0,024

1080

0,047527

0,022191

0,025336

126,6802

0,371879

50000

60000

65

0,013

715

0,022191

0,010361

0,01183

59,14851

0,526768

60000

70000

25

0,005

325

0,010361

0,004838

0,005523

27,61715

0,273978

70000

80000

10

0,002

150

0,004838

0,002259

0,002579

12,89478

0,837972

 

 

5000

1

13130

 

 

 

 

13,81289

 

Рис. 2. Гистограмма распределения эмпирических и теоретических частот

по наработкам вагона между отказами

 

 

Основные числовые характеристики распределения определяются по следующим формулам [10]:

                                   

                                                 

Математическое ожидание выборочное среднее (км):

                                                                

Наработка вагона от крайнего текущего ремонта до планового ремонта вагона представляет функцию распределения остатков наработки. При этом заметим, что данная наработка будет определяться равенством:

                                                         

где S – межремонтный ресурс вагона (160 тыс. км.); M(T1) – математическое ожидание наработки вагона до первого отказа; М(Т2) - математическое ожидание наработки вагона между отказами; n - количество отказов (текущих ремонтов) вагона в межремонтном периоде.

На рис. 3 представлена графическая модель надежности грузового вагона в межремонтном периоде.

 

Рис.3. Графическая модель надежности грузового вагона

 

 

Таким образом, в результате проведенного исследования определены наработки вагона в межремонтном периоде до первого отказа (после планового ремонта) и между отказами.

 

  

Расчетное обоснование межремонтного ресурса полувагона

 

При исследовании надежности в качестве теоретической модели принимают диффузионное немонотонное распределение (DN-распределение). 

Результаты моделирования и расчетов средней наработки на отказ приведенных исследований показали хорошее совпадение результатов оценки средней наработки на отказ в процессе эксплуатации на основе использования DN-распределения. Это дает основание решать задачу оценки (прогнозирования) срока службы еще на этапе проектирования технической системы. Исходными данными для расчета срока службы являются количественный состав и показатели надежности элементов (средняя наработка до отказа, коэффициент вариации наработки) определяемые по формулам [11,12]:

                                   

                                                    

                                                          

                                           

                                               

где Т1 - средняя наработка до отказа системы; Т2 – средняя наработка на отказ системы на стационарном участке; Т3 – значение наработки (времени эксплуатации), соответствующее моде плотности DN – распределения    [13].      

Если определен средний срок службы 𝑇𝑐, то принимая гипотезу о том, что распределение срока службы может быть также описано DN-распределением, параметр масштаба которого совпадает с полученной оценкой , а параметр формы может быть оценен через коэффициент вариации наработки до отказа (на отказ), то есть  (здесь v1 – коэффициент вариации наработки до первого отказа системы).

Таким образом, закон распределения срока службы технической системы имеет следующий вид:

 

где   - функция нормированного нормального распределения.

 

Остаточный срок службы характеризуется продолжительностью эксплуатации технической системы до предельного состояния после некоторой суммарной наработки (соответствующей, например, контролю и оценке технического состояния). Информация об остаточном сроке службы необходима для использования в системе технического обслуживания, а также для выработки решений о возможности дальнейшей эксплуатации, а также о сроках и объемах проведения ремонтных работ.

Если закон распределения срока службы имеет DN-распределение, то средний остаточный срок службы после момента времени определяют по формуле:

 

 

 

 

Гамма-процентный остаточный срок службы для заданного значения определяется выражением:

                                                    

 

 

где  - определяют по значениям и  из таблиц DN – распределения или из решения  уравнения

 

Таким образом, используя приведенные выше формулы можно определить межремонтный ресурс вагона. 

Исходные данные для расчетного обоснования межремонтного ресурса вагона представлены в табл. 2. Введем уточнение, наработку между отказами примем за переменную величину, изменяющуюся в диапазоне от 10000 км до 30000 км. Результаты расчета представлены в табл. 3, графическая зависимость представлена на рис. 4.

 

 Таблица 2

Исходные и расчетные данные

Наименование параметра

Обозначение

Значение

Межремонтный ресурс вагона, км

Т1

160000

Наработка до первого отказа, км

Т2

85000

Наработка между отказами, км

Т3

10000….30000

Таблица 3

Расчет ресурса вагона до укрупненного ремонта

Т3

10000

0.910915

91681.37

11000

0.910915

92592.28

12000

0.910915

93503.2

13000

0.910915

94414.11

14000

0.910915

95325.03

15000

0.910915

96235.94

16000

0.910915

97146.86

17000

0.910915

98057.78

18000

0.910915

98968.69

19000

0.910915

99879.61

20000

0.910915

100790.5

21000

0.910915

101701.4

22000

0.910915

102612.4

23000

0.910915

103523.3

24000

0.910915

104434.2

25000

0.910915

105345.1

26000

0.910915

106256.0

27000

0.910915

107166.9

28000

0.910915

108077.8

29000

0.910915

108988.8

30000

0.910915

109899.7

 

Рис. 4.  Зависимость ресурса вагона до производства укрупненного

ремонта от наработки между отказами

 

Выводы

 

В результате проведенных исследований можно сделать следующие выводы:

 – отказ вагона в межремонтном периоде можно считать достоверным событием;

– наработка вагона до первого отказа составляет 85000 км;

– наработка вагона между отказами составляет 13130 км, что значительно ниже наработки до отказа;

– ресурс вагона до производства укрупненного ремонта зависит от наработки между отказами и наработки до первого отказа.

На основании изложенного целесообразно рассмотреть технологию реализации производства укрупненного текущего ремонта с целью исключения повторов отцепок вагона в межремонтном периоде. Необходимо отметить, что проведение ремонта крупного объема целесообразно предусмотреть только для полувагонов, как для подвижного состава с наибольшим коэффициентом интенсивности эксплуатации. Проведение данного ремонта обеспечит (исходя из приведенных выше расчетов) безотказную работу вагона в межремонтном периоде.

Список литературы

1. Устич, П.А. Вагонное хозяйство: учебник для ж.-д. транспорта / П.А. Устич, И.И. Хаба, В.А. Ивашов; под ред. П.А. Устича. - Москва: Маршрут, 2003. - 560 с.

2. Ковригина, И.В. Определение межремонтного ресурса грузового вагона / И.В.Ковригина //Наука и образование транспорту. - 2017. - №1. - С.45-48.

3. Гордиенко И.А. Статистическая оценка наработки до отказа полувагонов в межремонтном периоде / И.А. Гордиенко, Т.В. Иванова, Д.Г. Налабордин // Вагоны и вагонное хозяйство. - 2014. - №4. - С. 44-46.

4. Справочные материалы причин поступления грузовых вагонов в текущий отцепочный ремонт за 2019 год / Центральная дирекция инфраструктуры управления вагонного хозяйства, проектно-конструкторское бюро вагонного хозяйства. - Москва, 2019. - 153 с.

5. Малашкевич, Э.А. Прогнозирование отказов грузовых вагонов на основе анализа статистической информации / Э.А. Малашкевич, В.А. Петровых, Д.Г. Налабордин // Вагоны и вагонное хозяйство. - 2013 - №1. - С. 34 - 37.

6. Статистические методы обработки эмпирических данных. Рекомендации / ВНИИНМАШ. - Москва: Изд-во стандартов, 1978. - 232 с.

7. Володарский, В.А. О надежности подвижного состава прошедшего ремонт / В.А.Володарский, А.И.Орленко // Надежность. - 2015 - №1. - С. 25-28.

8. Рожкова, Е. А. Анализ устойчивости вагона от опрокидывания при движении в кривых участках пути различного радиуса / Е. А.Рожкова, А. Н. Астафьева, Т. А. Баранова // Молодая наука Сибири. - 2020.- №2. - С. 62-67.

9. Ермаков, А.О. Определение предельного состояния объектов железнодорожной техники / А.О.Ермаков // Надежность. - 2014.- №3. - С. 123-129.

10. Халафян, А.А. Статистический анализ данных: 3-е изд., учебник / А.А. Халафян. - Москва: ООО «Бином-Пресс», 2007. - 512 с.

11. Устич, П.А. Надежность рельсового нетягового подвижного состава / П.А. Устич, В.А. Карпычев, М.Н. Овечников; под ред. П.А. Устича. - Москва: УМЦ МПС России, 2004. - 416 с.

12. Кашковский, В.В. Методика назначения пробега вагонов между ремонтами / В.В. Кашковский // Известия Транссиба. - 2013. - №1. - С. 117 - 125.

13. Стрельников В.П. Закономерности изменения средней наработки на отказ технических систем в процессе эксплуатации / В.П. Стрельников, Н.В. Сеспедес-Гарсия // Математические машины и системы. - 2010. - №3. - С. 153-158.

Войти или Создать
* Забыли пароль?