ЭМБРИОТОКСИЧЕСКИЕ И ТЕРАТОГЕННЫЕ ЭФФЕКТЫ γ-ИЗЛУЧЕНИЯ У РЫБ ДАНИО (DANIO RERIO)
Аннотация и ключевые слова
Аннотация (русский):
В обзоре рассмотрены работы, представляющие экспериментальные данные по эмбритоксическим и тератогенным эффектам воздействия ионизирующего излучения у рыб данио (Danio rerio), являющихся удобным модельным объектом экспериментальной эмбриологии и радиационной биологии. Рассматриваются молекулярные механизмы, вовлеченные в ответ на действие ионизирующего излучения и определяющие уровень эмбриональной гибели, либо нарушения дальнейшего развития эмбрионов. Изложены данные об остром и хроническом с различной мощностью дозы воздействиях γ-излучения на эмбрионы различной стадии развития. Показано, что влияние γ-излучения на гибель и развитие эмбрионов рыб данио носит немонотонный характер, зависит как от условий облучения, так и от стадии эмбриогенеза. Результаты таких исследований крайне важны для понимания механизмов формирования радиационно-индуцированных биологических эффектов в эмбриогенезе позвоночных животных, включая человека, а также для разработки методов и подходов к оценке радиационного риска для развивающегося организма.

Ключевые слова:
γ-излучение, данио, эмбриогенез, тератогенез, эмбриотоксические эффекты
Список литературы

1. Assessment of risk from low-level exposure to radiation and chemicals. A critical overview. Basic Life Sci. 1985;33:1-529.

2. Radiation cancer analysis and low dose risk assessment: new developments and perspectives. Proceeding of the 20th LH Gray Conference. February 17-21, 2002. Ede, The Netherlands. J Radiol Prot. 2002;22(3A):A1-185.

3. Ionising radiation quality, molecular mechanisms, cellular effects, and their consequences for low level risk assessment and radiation therapy. Proceedings of the 14th International Symposium on microdosimetry. November 12-18, 2005. Venezia, Italy. Radiat Prot Dosimetry. 2006;122(1-4):1-550.

4. Sample BE. Overview of exposure to and effects from radionuclides in terrestrial and marine environments. Integr Environ Assess Manag. 2011;7(3):368-70. DOI:https://doi.org/10.1002/ieam.239.

5. Vives i Batlle J, Balonov M, Beaugelin-Seiller K, Beresford NA, Brown J, Cheng JJ, et al. Inter-comparison of absorbed dose rates for non-human biota. Radiat Environ Biophys. 2007;46(4):349-73. DOI:https://doi.org/10.1007/s00411-007-0124-1.

6. Hurem S, Martín LM, Brede DA, Skjerve E, Nourizadeh-Lillabadi R, Lind OC, et al. Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression. PloS one. 2017;12(6):e0179259-e. DOI:https://doi.org/10.1371/journal.pone.0179259.

7. Gagnaire B, Cavalie I, Pereira S, Floriani M, Dubourg N, Camilleri V, et al. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio. Aquat Toxicol. 2015;169:69-78. DOI:https://doi.org/10.1016/j.aquatox.2015.10.005.

8. Geiger GA, Parker SE, Beothy AP, Tucker JA, Mullins MC, Kao GD. Zebrafish as a "biosensor"? Effects of ionizing radiation and amifostine on embryonic viability and development. Cancer Res. 2006;66(16):8172-81. DOI:https://doi.org/10.1158/0008-5472.CAN-06-0466.

9. Miyachi Y, Kanao T, Okamoto T. Marked depression of time interval between fertilization period and hatching period following exposure to low-dose X-rays in zebrafish. Environ Res. 2003;93(2):216-9. DOI:https://doi.org/10.1016/s0013-9351(03)00042-2.

10. Hwang M, Yong C, Moretti L, Lu B. Zebrafish as a model system to screen radiation modifiers. Current genomics. 2007;8(6):360-9. DOI:https://doi.org/10.2174/138920207783406497.

11. Палыга Г.Ф. Эмбриогенез и ранний постнатальный онтогенез потомства двух поколений самок крыс Вистар в зависимости от времени их оплодотворения после облучения в малых дозах // Радиоционная биология. Радиоэкология. 2002. Т. 42, № 4. С. 390-394. [Palyga GF. Embryogenesis and early postnatal ontogenesis of posterity of two generations of female Wistar rats, depending on the time of their fertilization after low dose radiation exposure. Radiats Biol Radioecol. 2002;42(4):390-4. (In Russ.)].

12. Yusifov NI, Kuzin AM, Agaev FA, Alieva SG. The effect of low level ionizing radiation on embryogenesis of silkworm, Bombyx mori L. Radiat Environ Biophys. 1990;29(4):323-7.

13. Li CI, Nishi N, McDougall JA, Semmens EO, Sugiyama H, Soda M, et al. Relationship between Radiation Exposure and Risk of Second Primary Cancers among Atomic Bomb Survivors. Cancer research. 2010;70(18):7187-98. DOI:https://doi.org/10.1158/0008-5472.can-10-0276.

14. Hudson D, Kovalchuk I, Koturbash I, Kolb B, Martin OA, Kovalchuk O. Induction and persistence of radiation-induced DNA damage is more pronounced in young animals than in old animals. Aging. 2011;3(6):609-20. DOI:https://doi.org/10.18632/aging.100340.

15. Ahituv N, Rubin EM, Nobrega MA. Exploiting human--fish genome comparisons for deciphering gene regulation. Hum Mol Genet. 2004;13 Spec No 2:R261-6. DOI:https://doi.org/10.1093/hmg/ddh229.

16. Nakatani Y, Qu, W. and Morishita, S. Comparing the Human and Fish Genomes. In: John Wiley & Sons L, editor. eLS2013.

17. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498-503. DOI:https://doi.org/10.1038/nature12111.

18. White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nature reviews Cancer. 2013;13(9):624-36. DOI:https://doi.org/10.1038/nrc3589.

19. Freeman JL, Weber GJ, Peterson SM, Nie LH. Embryonic ionizing radiation exposure results in expression alterations of genes associated with cardiovascular and neurological development, function, and disease and modified cardiovascular function in zebrafish. Frontiers in genetics. 2014;5:268. DOI:https://doi.org/10.3389/fgene.2014.00268.

20. Choi VWY, Yu KN. Embryos of the zebrafish Danio rerio in studies of non-targeted effects of ionizing radiation. Cancer Letters. 2015;356(1):91-104. DOI:https://doi.org/10.1016/j.canlet.2013.10.020.

21. Pereira S, Bourrachot S, Cavalie I, Plaire D, Dutilleul M, Gilbin R, et al. Genotoxicity of acute and chronic gamma-irradiation on zebrafish cells and consequences for embryo development. Environmental Toxicology and Chemistry. 2011;30(12):2831-7. DOI: doihttps://doi.org/10.1002/etc.695.

22. Simon O, Massarin S, Coppin F, Hinton TG, Gilbin R. Investigating the embryo/larval toxic and genotoxic effects of γ irradiation on zebrafish eggs. Journal of Environmental Radioactivity. 2011;102(11):1039-44. DOI:https://doi.org/10.1016/j.jenvrad.2011.06.004.

23. Hu M, Hu N, Ding D, Zhao W, Feng Y, Zhang H, et al. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos. Radiation and Environmental Biophysics. 2016;55(4):441-50. DOI:https://doi.org/10.1007/s00411-016-0663-4.

24. Praveen Kumar MK, Shyama SK, Kashif S, Dubey SK, Avelyno Dc, Sonaye BH, et al. Effects of gamma radiation on the early developmental stages of Zebrafish (Danio rerio). Ecotoxicology and Environmental Safety. 2017;142:95-101. DOI:https://doi.org/10.1016/j.ecoenv.2017.03.054.

25. Rothkamm K, Lobrich M. Misrepair of radiation-induced DNA double-strand breaks and its relevance for tumorigenesis and cancer treatment (review). Int J Oncol. 2002;21(2):433-40.

26. Kakarougkas A, Jeggo PA. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol. 2014;87(1035):20130685. DOI:https://doi.org/10.1259/bjr.20130685.

27. Ward JF. Radiation Mutagenesis: The Initial DNA Lesions Responsible. Radiation Research. 1995;142(3):362-8. DOI:https://doi.org/10.2307/3579145.

28. Taccioli G, Gottlieb T, Blunt T, Priestley A, Demengeot J, Mizuta R, et al. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science. 1994;265(5177):1442-5. DOI:https://doi.org/10.1126/science.8073286.

29. Bladen CL, Lam WK, Dynan WS, Kozlowski DJ. DNA damage response and Ku80 function in the vertebrate embryo. Nucleic acids research. 2005;33(9):3002-10. DOI:https://doi.org/10.1093/nar/gki613.

30. Morgan SE, Lovly C, Pandita TK, Shiloh Y, Kastan MB. Fragments of ATM which have dominant-negative or complementing activity. Molecular and cellular biology. 1997;17(4):2020-9.

31. Imamura S, Kishi S. Molecular cloning and functional characterization of zebrafish ATM. The International Journal of Biochemistry & Cell Biology. 2005;37(5):1105-16. DOI:https://doi.org/10.1016/j.biocel.2004.10.015.

32. Bladen CL, Kozlowski DJ, Dynan WS. Effects of low-dose ionizing radiation and menadione, an inducer of oxidative stress, alone and in combination in a vertebrate embryo model. Radiation research. 2012;178(5):499-503. DOI:https://doi.org/10.1667/RR3042.2.

33. Gagnaire B, Cavalié I, Pereira S, Floriani M, Dubourg N, Camilleri V, et al. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio. Aquatic toxicology. 2015;169:69-78. DOI:https://doi.org/10.1016/j.aquatox.2015.10.005.

34. Inohaya K, Yasumasu S, Araki K, Naruse K, Yamazaki K, Yasumasu I, et al. Species-dependent migration of fish hatching gland cells that commonly express astacin-like proteases in common. Development, Growth & Differentiation. 1997;39(2):191-7. DOI: doihttps://doi.org/10.1046/j.1440-169X.1997.t01-1-00007.x.

35. Aanes H, Østrup O, Andersen IS, Moen LF, Mathavan S, Collas P, et al. Differential transcript isoform usage pre- and post-zygotic genome activation in zebrafish. BMC genomics. 2013;14:331-. DOI:https://doi.org/10.1186/1471-2164-14-331.

36. Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. The Journal of biological chemistry. 2009;284(36):24223-32. DOI:https://doi.org/10.1074/jbc.M109.016816.

37. Seo M, Lee Y-H. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. Journal of molecular biology. 2014;426(4):830-42. DOI:https://doi.org/10.1016/j.jmb.2013.11.021.

38. Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T, et al. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nature communications. 2014;5:3480. DOI:https://doi.org/10.1038/ncomms4480.

39. Sharma MK, Saxena V, Liu R-Z, Thisse C, Thisse B, Denovan-Wright EM, et al. Differential expression of the duplicated cellular retinoic acid-binding protein 2 genes (crabp2a and crabp2b) during zebrafish embryonic development. Gene Expression Patterns. 2005;5(3):371-9. DOI:https://doi.org/10.1016/j.modgep.2004.09.010.

40. Cai AQ, Radtke K, Linville A, Lander AD, Nie Q, Schilling TF. Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish. Development (Cambridge, England). 2012;139(12):2150-5. DOI:https://doi.org/10.1242/dev.077065.

Войти или Создать
* Забыли пароль?