Аннотация и ключевые слова
Аннотация (русский):
We present an overview, based on satellite observations at low Earth orbits, on electromagnetic radiation from ground power transmission lines at an industrial frequency 50–60 Hz. Particular attention has been given to Chibis-M and DEMETER satellite observations. The electric 40-cm antenna of the micro-satellite often recorded 50–60 Hz radiation (known as Power Line Emission (PLE)) when it flew over industrialized areas of the planet. The PLE spectral amplitude varied from 1.2 to 18 (μV/m)/Hz0.5, which corresponds to the electric field amplitude E~1 μV/m. We report results of numerical calculations of the electromagnetic response of the atmosphere and ionosphere to a large-scale surface emitter at a frequency of 50 Hz. According to simulation results, PLE with an intensity of ~1 μV/m observed on satellites in the nightside ionosphere at midlatitudes can be excited by an unbalanced current 8–10 A in a power transmission line above the earth's crust with conductivity of 10–3 S/m. At middle and low latitudes with an inclined geomagnetic field, the maximum response in the upper ionosphere to the transmission line radiation should be seen shifted equatorward, although this shift is less than that upon guidance by the geomagnetic field. The maximum amplitude of the electromagnetic response of the ionosphere to the power transmission line emission decreases for an inclined geomagnetic field, but insignificantly. To date, the PLE intensity in near-Earth space has turned out to be higher than the intensity of natural radiation in this range (Schumann resonances and ion whistlers), and continues to grow with the technological development of mankind.

Ключевые слова:
power line emission, ELF radiation, geomagnetically induced currents, low-orbit satellites
Текст произведения (PDF): Читать Скачать
Список литературы

1. Dudkin D., Pilipenko V., Korepanov V., Klimov S., Holzworth R. Electric field signatures of the IAR and Schumann resonance in the upper ionosphere detected by Chibis-M microsatellite. J. Atmos. Solar-Terr. Phys. 2014, vol. 117, pp. 81–87.

2. Dudkin F., Korepanov V., Dudkin D., Pilipenko V., Pronenko V., Klimov S. Electric field of the power terrestrial sources observed by microsatellite Chibis-M in the Earth’s ionosphere in frequency range 1–60 Hz. Geophys. Res. Lett. 2015, vol. 42, pp. 5686–5693.

3. Fedorov E., Mazur N., Pilipenko V., Baddeley L. Modeling the high-latitude ground response to the excitation of the ionospheric MHD modes by atmospheric electric discharge. J. Geophys. Res. 2016, vol. 121, pp. 11282–11301. DOI: 10.1002/2016JA023354.

4. Fedorov E., Mazur N., Pilipenko V., Vakhnina V. Modeling ELF electromagnetic field in the upper ionosphere from power transmission lines. Radio Sci. 2020, vol. 121, 55, e2019RS006943. DOI: 10.1029/2019RS006943.

5. Fraser-Smith A. A weekend increase in geomagnetic activity. J. Geophys. Res. 1979, vol. 84, pp. 2089–2096. DOI: 10.1029/JA084iA05p02089.

6. Helliwell R.A., Katsufrakis J.P., Bell T.F., Raghuram R. VLF line radiation in the Earth’s magnetosphere and its association with power system radiation. J. Geophys. Res. 1975, vol. 80, pp. 4249–4258.

7. Klimov S., Korepanov V., Marusenkov A., Novikov D. The study of electromagnetic parameters of space weather, micro-satellite “Chibis-M”, in: Sandau, R., H.-P. Roeser, A. Valenzuela (Eds.), Small satellite missions for earth observation: New developments and trends, Springer-Verlag Berlin Heidelberg, 2010, pp. 95–102. DOI: 10.1007/978-3-642-03501-2.

8. Koons H.C., Dazey M.H., Edgar B.C. Satellite observation of discrete VLF line radiation within transmitter-induced amplification bands. J. Geophys. Res. 1978, vol. 83, pp. 3887–3889.

9. Korepanov V., Dudkin D., Dudkin F. Study of electromagnetic processes in the ionosphere onboard microsatellite Chibis-M, In: Fedorov O. (ed.), Space research in Ukraine. Akademperiodyka Kyiv, 2014, pp. 7–12.

10. Korepanov V.E., Dudkin F.L., Pronenko V.A. Observations of radiation from power lines in near-Earth space. Geomagnetism and Aeronomy. 2015, vol. 55, pp. 706–711. DOI: 10.1134/S0016793215050084.

11. Kostrov A.V., Gushchin M.E., Strikovsky A.V. Generation and emission of harmonics of power lines. Geomagnetism and Aeronomy. 2017, vol. 57, pp. 482–490. DOI: 10.1134/S0016793217030094.

12. Mazur N.G., Fedorov E.N., Pilipenko V.A., Vakhnina V. ULF electromagnetic field in the upper ionosphere excited by lightning. J. Geophys. Res. 2018, vol. 123, pp. 6692–6702. DOI: 10.1029/2018JA025622.

13. Němec F., Santolík O., Parrot M., Berthelier J. Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft. J. Geophys. Res. 2006, vol. 111, A04308. DOI: 10.1029/2005JA011480.

14. Němec F., Santolík O., Parrot M., Berthelier J. Power line harmonic radiation: A systematic study using DEMETER spacecraft. Adv. Space Res. 2007, vol. 40, pp. 398–403. DOI: 10.1016/ j.asr.2007.01.074.

15. Němec F., Santolík O., Parrot M., Bortnik J. Power line harmonic radiation observed by satellite: Properties and propagation through the ionosphere. J. Geophys. Res. 2008, vol. 113, A08317. DOI: 10.1029/2008JA013184.

16. Nemec F, Parrot M, Santolik O. Power line harmonic radiation observed by the DEMETER spacecraft at 50/60 Hz and low harmonics. J. Geophys. Res. 2015, vol. 120, pp. 895–8967.

17. Park C.G., Helliwell R.A. Power line radiation in the magnetosphere, Adv. Space Res. 1981, vol. 1, pp. 423–437.

18. Parrot M., Nĕmec F., Santolík O. Statistical analysis of VLF radio emissions triggered by power line harmonic radiation and observed by the low-altitude satellite DEMETER. J. Geophys. Res. 2014, vol. 119. DOI: 10.1002/2014JA020139.

19. Pfaff R., Freudenreich H., Simões F., Liebrecht, M.C., Farrell W. Observations of 50/60 Hz power line radiation in the low latitude ionosphere detected by the electric field instrument on the C/NOFS satellite, General Assembly and Scientific Symposium, XXXIth URSI, Beijing, China, 2014, Book of abstracts, IEEE. DOI: 10.1109/URSIGASS.2014. 6929584.

20. Pilipenko V.A., Parrot M., Fedorov E.N., Mazur N.G. Electromagnetic field in the upper ionosphere from ELF ground-based transmitter. J. Geophys. Res. 2019, vol. 124. DOI: 10.1029/2019JA026929.

21. Rothkaehl H., Parrot M. Electromagnetic emissions detected in the topside ionosphere related to the human activity. J. Atmos. Solar-Terr. Phys. 2005, vol. 67, pp. 821–828.

22. Rodger C.J., N.R. Thomson, R.L. Dowden VLF line radiation observed by satellite. J. Geophys. Res. 1995, vol. 100, pp. 5681–5689. DOI: 10.1029/94JA02865.

23. Simões F.A., Pfaff R.F., Freudenreich H.T. Satellite observations of Schumann resonances in the Earth’s ionosphere. Geophys. Res. Lett. 2011, vol. 38, L22101. DOI: 10.1029/ 2011GL049668.

24. Vakhnina V.V., Kuvshinov A.A., Shapovalov V.A., et al. Mechanisms of the impact of quasi-DC geomagnetically induced currents on electrical networks, M., Infra-Engineering, 2018, 256 p.

25. Wu J., Fu J.J., Zhang C. Propagation characteristics of power line harmonic radiation in the ionosphere, Chinese Physics B. 2014, vol. 23, pp. 034102–034107. DOI: 10.1088/ 1674-1056/23/3/034102.

26. Wu J., Guo Q., Yue C., Li Xie. Special electromagnetic interference in the ionosphere directly correlated with power system. IEEE Transactions on Electromagnetic Compatibility. 2019. DOI: 10.1109/TEMC.2019.2918280.

27. Zeleny L.M., Gurevich A.V., Klimov S.I., Angarov V.N., Batanov O.V., Bogomolov A.V., et al. The academic microsatellite Chibis-M, Kosmicheskie Issledovanija [Cosmic Res.]. 2014, vol. 52, no. 2, pp. 93–105.

28. Zhang C., Ma Q. Influences of radiation from terrestrial power sources on the ionosphere above China based on satellite observation, 2nd International Workshop on Renewable Energy and Development, Conf. Series: Earth and Environmental Science. 2018, vol. 153, 042002. DOI: 10.1088/1755-1315/153/4/042002.

29. Zotov O.D., Guglielmi A.A. Problems of synchronism of electromagnetic and seismic events in the dynamic system magnetosphere-technosphere-lithosphere. Solar-Terr. Phys. 2010, vol. 16, pp. 19–25.

Войти или Создать
* Забыли пароль?