SPACE WEATHER: RISK FACTORS FOR GLOBAL NAVIGATION SATELLITE SYSTEMS
Рубрики: REVIEWS
Аннотация и ключевые слова
Аннотация (русский):
Extreme space weather events affect the stability and quality of the global navigation satellite systems (GNSS) of the second generation (GPS, GLONASS, Galileo, BeiDou/Compass) and GNSS augmentation. We review the theory about mechanisms behind the impact of geomagnetic storms, ionospheric irregularities, and powerful solar radio bursts on the GNSS user segment. We also summarize experimental observations of the space weather effects on GNSS performance in 2000–2020 to confirm the theory. We analyze the probability of failures in measurements of radio navigation parameters, decrease in positioning accuracy of GNSS users in dual-frequency mode and differential navigation mode (RTK), and in precise point positioning (PPP). Additionally, the review includes data on the occurrence of dangerous and extreme space weather phenomena and the possibility for predicting their impact on the GNSS user segment. The main conclusions of the review are as follows: 1) the positioning error in GNSS users may increase up to 10 times in various modes during extreme space weather events, as compared to the background level; 2) GNSS space and ground segments have been significantly modernized over the past decade, thus allowing a substantial increase in noise resistance of GNSS under powerful solar radio burst impacts; 3) there is a great possibility for increasing the tracking stability and accuracy of radio navigation parameters by introducing algorithms for adaptive lock loop tuning, taking into account the influence of space weather events; 4) at present, the urgent scientific and technical problem of modernizing GNSS by improving the scientific methodology, hardware and software for monitoring the system integrity and monitoring the availability of required navigation parameters, taking into account the impact of extreme space weather events, is still unresolved.

Ключевые слова:
space weather, GNSS, GPS, GLONASS, solar flares, magnetic storms, scintillations, PPP, RTK
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Aa E., Huang W., Liu S., Ridley A., Zou S., Shi L., Chen Y., Shen H., Yuan T., Li J., Wang T. Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather. 2018, vol. 16, pp. 321-331. DOI:https://doi.org/10.1002/2017SW001776.

2. Aarons J. Global morphology of ionospheric scintillations. Proc. of the IEEE. 1982, vol. 70, no. 4, pp. 360-378. DOI:https://doi.org/10.1109/PROC.1982.12314.

3. Afraimovich E.L., Perevalova N.P. GPS-monitoring verkhnei atmosfery Zemli [GPS monitoring of the Earth’s upper atmosphere]. Irkutsk, 2006, 480 p. (In Russian).

4. Afraimovich E.L., Lesyuta O.S., Ushakov I.I. Voeykov S.V. Geomagnetic storms and the occurrence of phase slips in the reception of GPS signals. Ann. Geophys. 2002, vol. 45, no. 1, pp. 55-71. DOI:https://doi.org/10.4401/ag-3494.

5. Afraimovich E.L., Demyanov V.V., Ishin A.B. Smolkov G.Ya. Powerful solar radio bursts as a global and free tool for testing satellite broadband radio systems, including GPS-GLONASS-GALILEO. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, no 15, pp. 1985-1994. DOI:https://doi.org/10.1016/j.jastp.2008.09.008.

6. Afraimovich E.L., Astafyeva E.I., Demyanov V.V. Gamayunov I.F. Mid-latitude amplitude scintillation of GPS signals and GPS performance slips. Adv. Space Res. 2009, vol. 43, iss. 6, pp. 964-972. DOI:https://doi.org/10.1016/j.asr.2008.09.015.

7. Afraimovich E.L., Demyanov V.V., Gavrilyuk N.S., Ishin A.B., Smolkov G.Ya. Malfunction of satellite navigation systems GPS and GLONASS caused by powerful radio emission of the Sun during solar flares on December 6 and 13, 2006, and October 28, 2003. Cosmic Res. 2009, vol. 47, pp. 126-137. DOI:https://doi.org/10.1134/S001095250902004X.

8. Akasofu S.I., Chapman S. Solar-Terrestrial Physics. Chapter 2. Oxford University Press, 1972, 901. p.

9. Anderson P.C., Straus P.R. Magnetic field orientation control of GPS occultation observations of equatorial scintillation. Geophys. Res. Lett. 2005, vol. 32, L21107. DOI: 10.1029/ 2005GL023781.

10. Astafyeva E., Yasyukevich Y., Maksikov A., Zhivetiev I. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Weather. 2014, vol. 12, no. 7, pp. 508-525. DOI:https://doi.org/10.1002/2014SW001072.

11. Barabanova L.P. Minimization of GNSS geometric factors. J. Comput. Syst. Sci. Int. 2010, vol. 49, pp. 310-317. DOI:https://doi.org/10.1134/S1064230710020164.

12. Bartels J., Heck N.H., Johnston H.F. The three-hour-range index measuring geomagnetic activity. Terrestrial Magnetism and Atmospheric Electricity. 1939, vol. 44, no. 4, pp. 411-454. DOI: 10.1029/ TE044i004p00411.

13. Bazarzhapov A.D., Matveev M.I., Mishin V.M. Geomagnitnye variacii i buri [Geomagnetic variations and storms]. Novosibirsk, Nauka Publ., 1979, 287 p. (In Russian).

14. BDS-SIS-ICD. BeiDou Navigation Satellite System Signal In Space Interface Control Document: Open Service Signal B1I (Version 3.0). 2019. BDS-SIS-ICD-B1I-3.0. 2019-02.

15. Berdermann J., Kriegel M., Banyś D., Heymann F., Hoque M.M., Wilken V., Borries C., Heßelbarth A., Jakowski N. Ionospheric response to the X9.3 Flare on 6 September 2017 and its implication for navigation services over Europe. Space Weather. 2018, vol. 16, iss. 10, pp. 1604-1615. DOI:https://doi.org/10.1029/2018SW001933.

16. Berghmans D., Van der Linden R.A.M., Vanlommel P., Warnant R., Zhukov A., Robbrecht E., et al. Solar activity: nowcasting and forecasting at the SIDC. Ann. Geophys. 2005, vol. 23, no. 6, pp. 3115-3128. DOI:https://doi.org/10.5194/angeo-23-3115-2005.

17. Bhattacharrya A., Yen K.C., Franke S.J. Deducing turbulence parameters from transionospheric scintillation measurements. Space Sci. Rew. 1992, vol. 61, pp. 335-386. DOI:https://doi.org/10.1007/BF00222311.

18. Bruyninx C., Habrich H., Söhne W., Kenyeres A., Stangl G., Völksen C. Enhancement of the EUREF Permanent Network Services and Products. Geodesy for Planet Earth. IAG Symposia Series. 2012, vol. 136, pp. 27-35. DOI:https://doi.org/10.1007/978-3-642-20338-1_4.

19. Bruzek A., Durrant C.J. Illustrated Glossary for Solar and Solar-Terrestrial Physics. 1977, 207 p. DOI:https://doi.org/10.1007/978-94-010-1245-4.

20. Carrano C.S., Groves K.M., Bridgwood C.T. Effects of the December 2006 Solar Radio Bursts on the GPS Receivers of the AFRL-SCINDA Network // Proceedings of the International Beacon Satellite Symposium, Boston College. June 11-15, 2007.

21. Carrano C.S., Bridgwood C.T., Groves K.M. Impacts of the December 2006 solar radio bursts on the performance of GPS. Radio Sci. 2009, vol. 44, RS0A25. DOI:https://doi.org/10.1029/2008RS004071.

22. Cerruti A.P., Kintner P.M., Gary D.E., Lanzerotti L.J., de Paula E.R., Vo H.B. Observed Solar Radio Burst Effects on GPS/WAAS Carrier-to-Noise Ratio. Space Weather. 2006, vol. 4, S10006. DOI:https://doi.org/10.1029/2006SW000254.

23. Cerruti A.P., Kintner P.M., Gary D.E. Effect of intense December 2006 solar radio bursts on GPS receivers. Space Weather. 2008, vol. 6, S10D07. DOI:https://doi.org/10.1029/2007SW000375.

24. Chen Z., Gao Y., Liu Z. Evaluation of solar radio bursts' effect on GPS receiver signal tracking within International GPS Service network. Radio Sci. 2005, vol. 40, RS3012. DOI:https://doi.org/10.1029/2004RS003066.

25. Cherniak I., Zakharenkova I. First observations of super plasma bubbles in Europe. Geophys. Res. Lett. 2016, vol. 43, no. 21, pp. 11137-11145. DOI:https://doi.org/10.1002/2016GL071421.

26. Conker R.S., El-Arini M.B., Hegarty C.J., Hsiao T. Modeling the effects of ionospheric scintillation on GPS/Satellite-Based Augmentation System availability. Radio Sci. vol. 38, no. 1, 1001. DOI:https://doi.org/10.1029/2000RS002604.

27. Coster A.J., Foster J.C., Erickson P.J., Rich F.J. Regional GPS mapping of storm enhanced density during the July 15-16 2000 geomagnetic storm. Proceedings of International Beaco Satellite Symposium, June 4-6, 2001. Boston College; Institute for Scientific Research. USA: Chestnut Hill, MA. 2001, pp. 176-180.

28. Dabove P., Linty N., Dovis F. Analysis of multi-constellation GNSS PPP solutions under phase scintillations at high latitudes. Appl. Geomatics. 2020, vol. 12, pp. 45-52. DOI:https://doi.org/10.1007/s12518-019-00269-4.

29. Demyanov V.V., Yasyukevich Yu.V. Mekhanizmy vozdeistviya neregulyarnykh geofizicheskikh faktorov na funktsionirovanie sputnikovykh radionavigatsionnykh system [Mechanisms of impact of irregular geophysical factors on operation of radio positioning satellite systems], Irkutsk, Irkutsk State University Publ., 2014, 349 p. (In Russian).

30. Demyanov V.V., Afraimovich E.L., Jin S. An evaluation of potential solar radio emission power threat on GPS and GLONASS performance. GPS Solutions. 2012a, vol. 16, pp. 411-424. DOI:https://doi.org/10.1007/s10291-011-0241-9.

31. Demyanov V.V., Yasyukevich Y.V., Ishin A.B., Astafyeva E.I. Ionospheric super-bubble effects on the GPS positioning relative to the orientation of signal path and geomagnetic field direction. GPS Solutions. 2012b, vol. 16, pp. 181-189. DOI:https://doi.org/10.1007/s10291-011-0217-9.

32. Demyanov V.V., Zhang X., Lu X. Moderate geomagnetic storm condition, WAAS Alerts and real GPS positioning quality. J. Atmos. Sci. Res. 2019, vol. 2, no. 1, pp. 10-23. DOI:https://doi.org/10.30564/jasr.v2i1.343.

33. Dow J.M., Neilan R.E., Rizos C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy. 2009, vol. 83, pp. 191-198. DOI:https://doi.org/10.1007/s0019000803003.

34. Dulk A.G. Radio emission from the Sun and stars. Ann. Rev. Astron. Astrophys. 1985. vol. 23, pp. 169-224. DOI: 10.1146/ annurev.aa.23.090185.001125.

35. Falcone M., Lucas R., Burger T., Hein G.W. The European Galileo programme. The European EGNOS project. ESA Publications Division, Noordwijk, The Netherlands, SP-1303. 2006, pp. 435-455.

36. Freymueller J.T. AEIC (Kodiak) 2014. GPS/GNSS Observations Dataset. The GAGE Facility operated by UNAVCO, Inc., 2017.

37. Galileo-SIS-ICD. European GNSS (Galileo) open service. Signal-in-space interface control document. Issue 2.0, January 2021.

38. Giersch O.D., Kennewell J., Lynch M. Solar radio burst statistics and implications for space weather effects. Space Weather. 2017, vol. 15, pp. 1511-1522. DOI:https://doi.org/10.1002/2017SW001658.

39. GPS-WAAS-PS. Global Positioning System Wide Area Augmentation System (WAAS) Performance Standard. 2008-10.

40. Gulyaeva T.L., Gulyaev R.A. Chain of responses of geomagnetic and ionospheric storms to a bunch of central coronal hole and high speed stream of solar wind. J. Atmos. Solar-Terr. Phys. 2020, vol. 208, 105380. DOI:https://doi.org/10.1016/j.jastp.2020.105380.

41. Hargreaves J.K. The Upper Atmosphere and Solar-Terrestrial Relations. New York, Van Nostrand Reinhold Co. 1979, 312 p.

42. Hernandez-Pajares M., Juan J.M., Sanz J., Orus R., Garcia-Rigo A., Feltens J., Komjathy A., Schaer S.C., Krankowski A. The IGS VTEC maps: a reliable source of ionospheric information since 1998. J. Geodesy. 2009, vol. 83, no 3, pp. 263-275. DOI:https://doi.org/10.1007/s00190-008-0266-1.

43. Hofmann-Wellenhof B., Lichtenegger H., Collins J. Global Positioning System: Theory and Practice. 5th edition. New York, Springer-Verlag, 2001. 406 p. DOI:https://doi.org/10.1007/987-3-7091-6199-9.

44. Huang C.-S., de La Beaujardiere O., Roddy P.A., Hunton D.E., Pfaff R.F., Valladares C.E., Ballenthin J.O. Evolution of equatorial ionospheric plasma bubbles and formation of broad plasma depletions measured by the C/NOFS satellite during deep solar minimum. J. Geophys. Res.: Space Phys. 2011, vol. 116, no. A3, A03309. DOI:https://doi.org/10.1029/2010JA015982.

45. Huang W., Aa E., Shen H., Liu S. Statistical study of GNSS L-band solar radio bursts. GPS Solutions. 2018, vol. 22, 114. DOI:https://doi.org/10.1007/s10291-018-0780-4.

46. IKD SDKM. Sistema differencial’noj korrekcii i monitoringa [System for differential correction and monitoring]: 1st edition. 2012. (In Russian). 133 р.

47. Jacobsen K.S., Schäfer S. Observed effects of a geomagnetic storm on an RTK positioning network at high latitudes. J. Space Weather Space Clim. 2012, vol. 2, A13. DOI:https://doi.org/10.1051/swsc/2012013.

48. Jacobsen K.S., Andalsvik Y.L. Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in Norway. J. Space Weather Space Clim. 2016, vol. 6, A9. DOI:https://doi.org/10.1051/swsc/2016004.

49. Jayachandran P.T., Langley R.B., MacDougall J.W., Mushini S.C., Pokhotelov D., Hamza A.M., Mann I.R., Milling D.K., Kale Z.C., Chadwick R., Kelly T., Danskin D.W., Carrano C.S. Canadian High Arctic Ionospheric Network (CHAIN). Radio Sci. 2009, vol. 44, no. 1, RS0A03. DOI: 10.1029/ 2008RS004046.

50. Jin S., Cardellach E., Xie F. GNSS Remote Sensing: Theory, Methods and Applications, Remote Sensing and Digital Image Processing. 2014, vol. 19, 276 p. DOI:https://doi.org/10.1007/978-94-007-7482-7.

51. Kaplan E.D. Understanding GPS: principles and applications. 1996, 556 p.

52. King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res.: Space Phys. 2005, vol. 110, no. A2, A02104. DOI:https://doi.org/10.1029/2004JA010649.

53. Klobuchar J.A., Kunches J.M., Van Dierendonck A.J. Eye on the ionosphere: Potential solar radio burst effects on GPS signal to noise. GPS Solutions. 1999, vol. 3, no. 2, pp. 69-71. DOI:https://doi.org/10.1007/PL00012794.

54. Kolesnik S.N., Tinin M.V., Afanasiev N.T. Statistical characteristics of a wave propagating through a layer with random irregularities. Waves in Random Media. 2002, vol. 12, pp. 417-431. DOI:https://doi.org/10.1088/0959-7174/12/4/302.

55. Kozyreva O.V., Pilipenko V.A., Zakharov V.I., Engebretson M.J. GPS-TEC response to the substorm onset during April 5, 2010, magnetic storm. GPS Solutions. 2017, vol. 21, no. 3, pp. 927-936. DOI:https://doi.org/10.1007/s10291-016-0581-6.

56. Kravtsov A.Y. Prohozhdenie radiovoln cherez ionosferu Zemli [Propagation of radio waves in the Earth ionosphere]. Moscow, Radio i svyaz’ Publ., 1983, 224 p. (In Russian).

57. Lakhina G., Alex S., Tsurutani B., Gonzalez W. Research on Historical Records of Geomagnetic Storms. Proceedings of the International Astronomical Union, 2004(IAUS226). 2004, pp. 3-15. DOI:https://doi.org/10.1017/S1743921305000074.

58. Lekshmi V.D., Balan N., Tulasi S.R., Liu J.-Y. Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. J. Geophys. Res.: Space Phys. 2011, vol. 116, A11328. DOI:https://doi.org/10.1029/2011JA017042.

59. Li Z., Wang N., Hernández-Pajares M., Yuan Y., Krankowski A., Liu A., Zha J., et al. IGS real-time service for global ionospheric total electron content modeling. J. Geodesy. 2020, vol. 94, 32. DOI:https://doi.org/10.1007/s00190-020-01360-0.

60. Linty N. Codeless tracking algorithms for GNSS software receivers: Tesi di Laurea Magistrale. Torino. 2010, 126 p.

61. Linty N., Minetto A., Dovis F., Spogli L. Effects of phase scintillation on the GNSS positioning error during the September 2017 storm at Svalbard. Space Weather. 2018, vol. 16, pp. 1317-1329. DOI:https://doi.org/10.1029/2018SW001940.

62. Loewe C.A., Prölss G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, vol. 102, no. A7, pp. 14209-14213. DOI:https://doi.org/10.1029/96JA04020.

63. Love J.J., Hayakawa H., Cliver E.W. Intensity and impact of the New York Railroad superstorm of May 1921. Space Weather. 2019, vol. 17, pp. 1281-1292. DOI:https://doi.org/10.1029/2019SW002250.

64. Luo M., Pullen S., Ene A., Qiu D., Walter T., Enge P. Ionosphere threat to LAAS: updated model, user impact, and mitigations. 17th International Technical Meeting of the Satellite Division (ION GNSS 2004). Long Beach, 2004, pp. 2771-2785.

65. Luo X., Gu S., Lou Y., Xiong C., Chen B., Jin X. Assessing the performance of GPS precise point positioning under different geomagnetic storm conditions during solar cycle 24. Sensors. 2018, vol. 18, no. 6, 1784. DOI:https://doi.org/10.3390/s18061784.

66. Luo X., Gu S., Lou Y., Song W. Better thresholds and weights to improve GNSS PPP under ionospheric scintillation activity at low latitudes. GPS Solutions. 2020, vol. 24, 17. DOI:https://doi.org/10.1007/s10291-019-0924-1.

67. Ma G., Maruyama T. A super bubble detected by dense GPS network at East Asian longitudes. Geophys. Res. Lett. 2006, vol. 33, no. 21, L21103. DOI:https://doi.org/10.1029/2006GL027512.

68. McCaffrey A.M., Jayachandran P.T. Spectral characteristics of auroral region scintillation using 100 Hz sampling. GPS Solutions. 2017, vol. 21, pp. 1883-1894. DOI:https://doi.org/10.1007/s10291-017-0664-z.

69. Michalek G., Puchowska K., Rams A. Statistical analysis of decimetric radio bursts, flares and coronal mass ejections. Solar Phys. 2009, vol. 257, pp. 113-124. DOI:https://doi.org/10.1007/s11207-009-9343-8.

70. Moreno B., Radicella S., de Lacy M.C., Herraiz M., Rodriguez-Caderot G. On the effects of the ionospheric disturbances on precise point positioning at equatorial latitudes. GPS Solutions. 2011, vol. 15, N 4, pp. 381-390. DOI:https://doi.org/10.1007/s10291-010-0197-1.

71. Pashintsev V.P., Akhmadeev R.R., Prediction noise immunity of satellite communications system and navigation according to GPS-monitoring ionosphere. Elektrosvyaz, 2015, no. 11, pp. 32-38. (In Russian).

72. Pashintsev V.P., Gamov М.V. Influence of dispersion ionosphere on pseudo range measurements in satellite radio navigation systems. Radioelectron. Commun. Syst. 2002, vol. 45, no. 12, pp. 3-13.

73. Psiaki M.L. Block acquisition of weak GPS signals in a software receiver. Proc. ION GPS 2001, Salt Lake City, UT, September 11-14, 2001, pp. 2838-2850.

74. Riley P. On the probability of occurrence of extreme space weather events. Space Weather. 2012, vol. 10, S02012. DOI:https://doi.org/10.1029/2011SW000734.

75. Rino C.L. The Theory of Scintillation with Applications in Remote Sensing, Hoboken, NJ, John Wiley & Sons, Inc., 2011, 230 p. DOI:https://doi.org/10.1002/9781118010211.

76. Rodríguez-Bilbao I., Radicella S.M., Rodríguez-Caderot G., Herraiz M. Precise point positioning performance in the presence of the 28 October 2003 sudden increase in total electron content. Space Weather. 2015, vol. 13, pp. 698-708. DOI:https://doi.org/10.1002/2015SW001201.

77. Saito S., Yoshihara T. Evaluation of extreme ionospheric total electron content gradient associated with plasma bubbles for GNSS Ground-Based Augmentation System // Radio Sci. 2017, vol. 52, pp. 951-962. DOI:https://doi.org/10.1002/2017RS006291.

78. Shi C., Liu J. GNSS status and developments in China. Presentation at the Civil Global Positioning System Service Interface Committee, 46th meeting, Fort Worth, Texas, September 26. 2006.

79. Siscoe G., Crooker N.U., Clauer C. Dst of the Carrington storm of 1859. Adv. Space Res. 2006, vol. 38, iss. 2, pp. 173-179. DOI:https://doi.org/10.1016/j.asr.2005.02.102.

80. Skone S., Shrestha S.M. Limitations in DGPS positioning accuracies at low latitudes during solar maximum. Geophys. Res. Lett. 2002, vol. 29, no. 10, p. 81-1-81-4. DOI: 10.1029/ 2001GL013854.

81. Smith J., Heelis R.A. Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 5743-5755. DOI:https://doi.org/10.1002/2017JA024128.

82. Sreeja V., Aquino M., Jong K. Impact of the 24 September 2011 solar radio burst on the performance of GNSS receivers. Space Weather. 2013, vol. 11, pp. 306-312. DOI: 10.1002/ swe.20057.

83. Vadakke S.V., Aquino M., Marques H.A., Moraes A. Mitigation of ionospheric scintillation effects on GNSS precise point positioning (PPP) at low latitudes. J. Geodesy. 2020, vol. 94, 15. DOI:https://doi.org/10.1007/s00190-020-01345-z.

84. Vani B.C., Forte B., Monico J.F.G., Skone S., Shimabukuro M.H., Moraes A., Portellla I.P., Marques H.A. A Novel Approach to Improve GNSS Precise Point Positioning During Strong Ionospheric Scintillation: Theory and Demonstration. IEEE Transactions on Vehicular Technology. 2019, vol. 68, no 5, pp. 4391-4403. DOI:https://doi.org/10.1109/TVT.2019.2903988.

85. Vdovin V.S., Dvorkin V.V., Karpik A.P., Lipatnikov L.A., Sorokin S.D., Steblov G.M. Current state and future development of active satellite geodetic networks in Russia and their integration into ITRF. Vestnik SGUGiT [Vestnik (Bulletin) of the Siberian State University of Geosystems and Technologies (SSUGT)]. 2018, vol. 23, no. 1, pp. 6-27. (In Russian).

86. Warnant R., Lejeune S., Bavier M. Space weather influence on satellite-based navigation and precise positioning. Space Weather. 2007, vol. 344, pp. 129-146. DOI:https://doi.org/10.1007/1-4020-5446-7_14.

87. Yakovlev O.I. Kosmicheskaya radiofizika [Space radio physics]. Voronezh, Nauchnaya kniga Publ., 1998, 432 p. (In Russian).

88. Yasyukevich Y., Astafyeva E., Padokhin A., Ivanova V., Syrovatskii S., Podlesnyi A. The 6 September 2017 X-class solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation. Space Weather. 2018, vol. 16, pp. 1013-1027. DOI:https://doi.org/10.1029/2018SW001932.

89. Yasyukevich Yu.V., Kiselev A.V., Zhivetiev I.V., Edemskiy I.K., Syrovatskii S.V., Maletckii B.M., Vesnin A.M. SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solutions. 2020a, vol. 24, 69. DOI:https://doi.org/10.1007/s10291-020-00983-2.

90. Yasyukevich Y., Vasilyev R., Ratovsky K. Small-scale ionospheric irregularities of auroral origin at mid-latitudes during the 22 June 2015 magnetic storm and their effect on GPS positioning. Remote Sensing. 2020b, vol. 12, no 10, 1579. DOI:https://doi.org/10.3390/rs12101579.

91. Yasyukevich Yu.V., Syrovatskiy S.V., Padokhin A.M., Frolov V.L., Vesnin A.M., Zatolokin D.A., Kurbatov G.A., Zagretdinov R.V., Pershin A.V., Yasyukevich A.S. GPS positioning accuracy in different modes with active forcing on the ionosphere from the SURA high-power HF radiation. Radiophysics and Quantum Electronics. 2020с, vol. 62, pp. 807-819. DOI:https://doi.org/10.1007/s11141-020-10026-y.

92. Yasyukevich Yu.V., Yasyukevich A.S., Astafyeva E.I. How modernized and strengthened GPS signals enhance the system performance during solar radio bursts. GPS Solutions. 2021, vol. 25, 46. DOI:https://doi.org/10.1007/s10291-021-01091-5.

93. Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Y. Occurrence rate of extreme magnetic storms. J. Geophys. Res.: Space Phys. 2013, vol. 118, pp. 4760-4765. DOI:https://doi.org/10.1002/jgra.50467.

94. Zakharov V.I., Chernyshov A.A., Miloch W., Jin Y. Influence of the ionosphere on the parameters of the GPS navigation signals during a geomagnetic substorm. Geomagnetism and Aeronomy. 2020, vol. 60, pp. 754-767. DOI:https://doi.org/10.1134/S00 16793220060158.

95. Zatolokin D.A. Programma resheniya navigatsionnoi zadachi GNSS «Navi»: Svidetel’stvo o gosudarstvennoi registratsii programmy EVM № 2020612010 [Program Navi for GNSS positioning. Certificate of State Registration No. 2020612010]. 2020. (In Russian).

96. Zherebtsov G.A. Complex of heliogeophysical instruments of new generation. Solar-Terr. Phys. 2020, vol. 6, no. 2, pp. 3-13. DOI:https://doi.org/10.12737/stp-62202001.

97. Zhang X., Guo F., Zhou P. Improved precise point positioning in the presence of ionospheric scintillation. GPS Solutions. 2014, vol. 18, pp. 51-60. DOI:https://doi.org/10.1007/s10291-012-0309-1.

98. Zhou F., Dong D., Li W., Jiang X., Wickert J., Schuh H. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions. 2018, vol. 22, 33. DOI:https://doi.org/10.1007/s10291-018-0699-9.

99. Zumberge J.F., Heflin M.B., Jefferson D.C. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res.: Solid Earth. 1997, vol. 102, no. B3. pp. 5005-5017. DOI:https://doi.org/10.1029/96JB03860.

100. URL: https://qzss.go.jp/en/technical/download/pdf/ps-is-qzss/is-qzss-l6-001.pdf (accessed February 1, 2021).

101. URL: https://www.isro.gov.in/sites/default/files/irnss_sps_ icd_version1.1-2017.pdf (accessed February 1, 2021).

102. URL: https://www.sonel.org (accessed February 1, 2021).

103. URL: https://hive.geosystems.aero (accessed February 1, 2021).

104. URL: https://eft-cors.ru (accessed February 1, 2021).

105. URL: https://kb.igs.org/hc/en-us/articles/201096516-IGS-Formats (accessed February 1, 2021).

106. URL: http://gps.ece.cornell.edu/briefs.php (accessed March 25, 2021).

107. URL: https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/rstn-1-second (accessed March 25, 2021).

108. URL: https://gps.gov/technical/icwg/IS-GPS-200J.pdf (accessed March 25, 2021).

109. URL: https://www.nstb.tc.faa.gov/DisplayArchive.htm (accessed February 1, 2021).

110. URL: ftp://ftp.ngdc.noaa.gov/STP/swpc_products/daily_reports /solar_event_reports (accessed February 1, 2021).

111. URL: https://omniweb.sci.gsfc.nasa.gov (accessed March 25, 2021).

112. URL: https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/radio-bursts/reports/fixed-frequency-listings (accessed February 1, 2021).

Войти или Создать
* Забыли пароль?