Казань, Россия
Юниверсити-Парк, США
Казанский федеральный университет
Токио, Япония
Казань, Россия
Иркутск, Россия
Казань, Россия
Казань, Россия
Казань, Россия
In this paper, we discuss the main types of quasiperiodic variations in amplitudes of a reflected signal during vertical sounding of the ionosphere at middle latitudes. The initial experimental data is vertical sounding ionograms obtained by the Cyclone ionosonde. The ionosonde is located in Kazan (59°, 49°) and in standard mode allows us to receive one ionogram per minute. In the analysis, methods are used to visualize a large flow of ionograms in the form of final summary maps of the state of the ionosphere (A-, H-, As-maps). We give typical examples of quasiperiodic variations in amplitudes of a reflected signal in ionograms and on A-maps for various types of multipath beatings (polarization and due to signal scattering by ionospheric irregularities). Frequency properties of such beatings are used to estimate the difference in virtual reflection heights between modes of different polarizations with high accuracy, which makes it possible to refine the form of the electron density profile of the lower ionosphere. We have detected a phenomenon rare for the mid-latitude Es layer — beatings of two O modes with different virtual reflection heights. We also present features of quasiperiodic variations in amplitudes of a reflected signal on traces of the transient Es layer. We study possible causes of the appearance of such beatings.
ionosonde, ionogram, ionosphere, magnetoionic modes, A-maps
1. Akchurin A.D., Yusupov K.M. Control system for ionosonde Cyclone. Nauchno-tekhnicheskie vedomosti SPbGPU [St. Petersburg State Polytechnical University Journal]. 2010, no. 108, pp. 49-56. (In Russian).
2. Akchurin A.D., Yusupov K.M. The frequency properties of the quasiperiodic variations of midlatitude Es layer traces amplitude. 2011 XXXth URSI General Assembly and Scientific Symposium. Istabbul, 2011. P. 1-4. DOI:https://doi.org/10.1109/URSIGASS. 2011.6050993. https://ieeexplore.ieee.org/document/6050993? reload=true&arnumber=6050993.
3. Akchurin A.D., Yusupov K.M. Frequency properties of quasi-periodical beatings at AFC of mid-latitude Es layer. Uchenye zapiski Kazanskogo universiteta [Proc. of Kazan University]. Ser. Phys. and Math. Sciences. 2011, vol. 153, no. 1, pp. 7-16. (In Russian).
4. Antonov A.M., Nepomnyashchaya E.V., Fatkullin M.N. F-spread phenomenon in daytime mid-latitude ionosphere. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1987, vol. 27, no. 5, pp. 831-833. (In Russian).
5. Bakhmet’eva N.V., Belikovich V.V., Ignat’ev Y.A., Ponyatov A.A. Vertical motions in the lower ionosphere and a sporadic E layer. Radiophysics and Quantum Electronics. 1999, vol. 42, pp. 22-30. DOI:https://doi.org/10.1007/BF02677637.
6. Bakhmet’eva N.V., Belikovich V.V., Kagan L.M., Ponyatov A.A. Sunset-sunrise characteristics of sporadic layers of ionization in the lower ionosphere observed by the method of resonance scattering of radio waves from artificial periodic inhomogeneities of the ionospheric plasma. Radiophysics and Quantum Electronics. 2005, vol. 48, pp. 14-28. DOI:https://doi.org/10.1007/s11141-005-0044-3.
7. Booker, H.G., Wells, H.W. Scattering of radio waves by the F region of the ionosphere. Terr. Magn. Atmos. Electr. 1938, vol. 43, no. 3, pp. 249- 256. DOI:https://doi.org/10.1029/TE043i003p00249.
8. Booker H.G., Pasmicha P.K., Powers W.J. Use of scintillation theory to explain frequency-spread on F-region ionograms. J. Atmos. Terr. Phys. 1986, vol. 48, no. 4, pp. 327-354.
9. Bowman G.G. Spread-F occurrence in mid and low-latitude regions related tovarious levels of geomagnetic activity. J. Atmos. Terr. Phys. 1982, vol. 44, no. 7.1, pp. 585-589.
10. Budden K.G. Radio Waves in the Ionosphere. Cambridge University Press, 1961. 542 p.
11. Chessel C.I. The numerical calculation of reflection and transmission coefficients for thin highly ionised layers including the effect of the Earth’s magnetic field. J. Atmos. Terr. Phys. 1971a, vol. 33, p. 1515. DOI:https://doi.org/10.1016/0021-9169(71)90070-5.
12. Chessel C.I. Results of numerical calculation of reflection and transmission coefficients for thin highly ionised layers and their application to sporadic-E reflections. J. Atmos. Terr. Phys. 1971b, vol. 33, pp. 1803-1822. DOI:https://doi.org/10.1016/0021-9169(71)90161-9.
13. Chkhetiani O.G., Shalimov S.L. Mechanism by which frontal structures in the ionospheric sporadic E layers are formed. Geomagnetism and Aeronomy. 2013, vol. 53, no. 2, pp. 177-187. DOI:https://doi.org/10.1134/S0016793213020059.
14. Drobzhev V.I., Kudelin G.M., Nurgozhin V.I., Penelitsyn G.M., Rudina M.P., Troitsky B.V., Yakovets A.F. Volnovye vozmushcheniya v ionosphere [Wave disturbances in the ionosphere]. Alma-Alta, Nauka, 1975. 178 p. (In Russian).
15. Gershman B.N., Kazimirovsky E.S., Kokourov V.D., Chernobrovkina N.A. F-rasseyanie v ionosphere [F-spread in the ionosphere]. Moscow, Nauka, 1984. 141 p. (In Russian).
16. Haldoupis C. Haldoupis C. A tutorial review on sporadic E layers. Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Ser. Springer, Dordrecht, 2011, vol. 2. DOI:https://doi.org/10.1007/978-94-007-0326-1_29.
17. Haldoupis C., Kelley M.C., Hussey G.C., Shalimov S. Role of unstable sporadic-E layers in the generation of midlatitude spread F. J. Geophys. Res. 2003, vol. 108, iss. A12, pp. 1446. DOI:https://doi.org/10.1029/2003JA009956.
18. Haldoupis C., Meek C., Christakis N., Pancheva D., Bourdillon A. Ionogram height-time-intensity observations of descending sporadic E layers at mid-latitude. J. Atmos. Solar-Terr. Phys. 2006, vol. 68, pp. 539-557. DOI:https://doi.org/10.1016/j.jastp.2005.03.020.
19. Harris T.J., Quinn A.D., Pederick L.H. The DST group ionospheric sounder replacement for JORN. Radio Sci. 2016, vol. 51, pp. 563-572. DOI:https://doi.org/10.1002/2015RS005881.
20. Jalonen L. Quasi-periodic frequency dependence of Es- and E-layer echo amplitudes caused by mode coupling // J. Atmos. Terr. Phys. 1981, vol. 43, pp. 1285-1288. DOI:https://doi.org/10.1016/0021-9169(81)90153-7.
21. Kozlovsky A., Shalimov S., Kero J., Raita T., Lester M. Multi-instrumental observations of nonunderdense meteor trails. J. Geophys. Res.: Space Phys. 2018, vol. 123, iss. 7, pp. 5974-5989. DOI:https://doi.org/10.1029/2018JA025405.
22. Lynn K.J.W., Otsuka Y., Shiokawa K. Simultaneous observations at Darwin of equatorial bubbles by ionosonde-based range/time displays and airglow imaging. Geophys. Res. Lett. 2011, vol. 38, pp. L23101. DOI:https://doi.org/10.1029/2011GL049856.
23. Maruyama T., Saito S., Yamamoto M., Fukao S. Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF coherent backscatter radar. Ann. Geophys. 2006, vol. 24, pp. 153-162. DOI:https://doi.org/10.5194/angeo-24-153-2006.
24. Maruyama T., Kato H., Nakamura M. Meteor-induced transient sporadic E as inferred from rapid-run ionosonde observations at midlatitudes. J. Geophys. Res. 2008, vol. 113, A09308. DOI:https://doi.org/10.1029/2008JA013362.
25. Mathews J.D. Sporadic E: Current views and recent progress. J. Atmos. Solar-Terr. Phys. 1998, vol. 60, pp. 413-435. DOI:https://doi.org/10.1016/S1364-6826(97)00043-6.
26. Mathews J.D., Bekeny F.S. Upper atmosphere tides and the vertical motion of ionospheric sporadic layers at Arecibo. J. Geophys. Res. 1979, vol. 84, pp. 2743-2750. DOI: JA084iA06 p02743.
27. Mathews J.D., Machugaa D.W., Zhou Q. Evidence for electrodynamic linkages between spread-F, ion rain, the intermediate layer, and sporadic E: results from observations and simulations. J. Atmos. Solar-Terr. Phys. 2001, vol. 63, iss. 14, pp. 1529-1543. DOI:https://doi.org/10.1016/S1364-6826(01)00034-7.
28. Mathews J.D., Briczinski S.J., Malhotra A., Cross J. Extensive meteoroid fragmentation in V/UHF radar meteor observations at Arecibo Observatory. Geophys. Res. Lett. 2010, vol. 37, pp. L04103. DOI:https://doi.org/10.1029/2009GL041967.
29. Muradov A., Mukhametnazarova A. Quantitative characteristics of F-spread. Issledovaniya po geomagnetimu, aeronomii I fizike Solntsa [Res. on Geomagnetism, Aeronomy and Solar Physics]. 1982, iss. 59, pp. 24-28. (In Russian).
30. Renau Y.A. A study of observed spread-F. J. Geophys. Res. 1960, vol. 65, no. 10, p. 3219.
31. Shalimov S.L. Dynamics and electrodynamics of ionospheric inhomogeneities of the midlatitude E region (Review). Geomagnetism and Aeronomy. 2014, vol. 54, no. 2, pp.137-151. DOI:https://doi.org/10.1134/S0016793214020170.
32. Sherstyukov O.N. Otrazhayushchaya sposobnost’ sredneshirotnogo sloya E [Reflection power of mid-latitude sporadic E layer]. PhD Thesis (Phys.&Math.). Kazan, 1989, 200 p. (In Russian).
33. Tolstikov M.V. Dinamika volnovykh neodnorodnostei plazmy vneshnei ionosfery [Dynamics of Wave Plasma Inhomogeneities in the Outer Ionosphere]. PhD Thesis 01.04.03. Irkutsk, 2004, 106 p. RGB OD 61:04-1/1182. (In Russian).
34. Turunen T., Nygren T., Jalonen L. Observations of the reflection coefficient of the sporadic E-layer at high latitudes. J. Atmos. Terr. Phys. 1980, vol. 42, pp. 147-154. DOI:https://doi.org/10.1016/0021-9169(80)90074-4.
35. Vybornov F.I., Mityakova E.E., Rakhlin A.V. Behavior characteristics of the index of middle-latitude F-spread. Radio-physics and Quantum Electronics. 1997, vol. 40, pp. 206-209.
36. Whitehead J.D. Recent work on mid-latitude and equatorial sporadic-E. J. Atmos. Terr. Phys. 1989, vol. 51, pp. 401-424. DOI:https://doi.org/10.1016/0021-9169(89)90122-0.
37. Yusupov K.M. Fine structure of reflections from the sporadic E layer. PhD Thesis (Phys.&Math.). 2011, 141 p. (In Russian).
38. Yusupov K., Maruyama T., Akchurin A., Sherstyukov O. Transient Es-layers 2013-2014. 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2017. 2017, vol. 2017-January, pp. 1-3. DOI:https://doi.org/10.23919/URSIGASS.2017.8105077.