Аннотация и ключевые слова
Аннотация (русский):
We study the Pi3 pulsations (with a period T=15–30 min) that were recorded on December 8, 2017 at ground stations in the midnight sector of the magnetosphere at the latitude range of DP2 current system convective electrojets. We have found that Pi3 are especially pronounced in the pre-midnight sector with amplitude of up to 300 nT and duration of up to 2.5 hrs. The pulsation amplitude rapidly decreased with decreasing latitude from Ф′=72° to Ф′=63°. The event was recorded during the steady magnetospheric convection. In the southward Bz component of the interplanetary magnetic field, irregular oscillations were detected in the Pi3 frequency range. They correspond to slow magnetosonic waves occurring without noticeable variations in the dynamic pressure Pd. Ground-based geomagnetic observations have shown azimuthal propagation of pulsations with a 0.6–10.6 km/s velocity east and west of the midnight meridian. An analysis of the dynamics of pulsations along the meridian has revealed their propagation to the equator at a velocity 0.75–7.87 km/s. In the projection onto the magnetosphere, the velocities are close in magnitude to the observed propagation velocities of substorm injected electrons. In the dawn-side magnetosphere during ground-observed Pi3 pulsations, compression mode oscillations were recorded. We conclude that propagation of geomagnetic field oscillations in this event depends on the dynamics of particle injections under the action of a large-scale electric field of magnetospheric convection, which causes the plasma to move to Earth due to reconnection in the magnetotail. Small-scale oscillations in the magnetosphere were secondary, excited by the solar wind oscillations penetrating into the magnetosphere.

Ключевые слова:
Pi3 pulsations, steady magnetospheric convection, convection electrojets, particle injections, azimuthal and meridional propagation, wave disturbances in the interplanetary medium
Текст произведения (PDF): Читать Скачать
Список литературы

1. Alimaganbetov M., Streltsov A.V. ULF waves observed during substorms in the solar wind and on the ground. J. Atmosph. Solar-Terr. Phys. 2018, vol. 181, pp. 10–18.

2. Angelopoulos V., Chapman J.A., Mozer F.S., Scudder J.D., Russell C.T., Tsuruda K., et al. Plasma sheet electromagnetic power generation and its dissipation along auroral field lines. J. Geophys. Res. 2002, vol. 107, p. 1181. DOI: 10.1029/ 2001JA900136.

3. Baumjohann W., Treumann R.A. Basic Space Plasma Physics. London: Imperial College Press, 1996. 340 p. DOI: 10.1142/p015.

4. Beharrell M., Kavanagh A.J., Honary F. On the origin of high-m magnetospheric waves. J. Geophys. Res.: Atmospheres. 2010, vol. 115. DOI: 10.1029/2009JA014709.

5. Belakhovsky V.B., Pilipenko V.A., Samsonov S.N. Pi3 pulsations and their correlation with fluxes of charged particles in the magnetosphere and ionosphere. Proc. XXXVIII Annual Seminar “Physics of Auroral Phenomena”. Apatity. 2015, pp. 71–74. (In Russian).

6. Coronity F.V., Kennell C.F. Changes of magnetospheric configuration during the substorm growth phase. J. Geophys. Res. 1972, vol. 77, pp. 3361–3370.

7. Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, vol. 117, A09213, DOI: 10.1029/ 2012JA017683.

8. Guglielmi A.V., Zolotukhina N.A. Excitation of Alfvén oscillations in the magnetosphere by asymmetric ring current. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. 1980, iss. 50, pp. 129–138. (In Russian).

9. Hasegawa A. Drift mirror instability in the magneto¬sphere. Phys. Fluids. 1969, vol. 12. pp. 2642–2650.

10. Keiling A. Alfvén waves and their roles in the dynamics of the Earth's magnetotail: A review. Space Sci. Rev. 2009, vol. 142, pp. 73–156.

11. Keiling A., Parks G.K., Wygant J.R., Dombeck J., Mozer F.S., Russell C.T., Streltsov A.V., Lotko W. Some properties of Alven waves: Observations in the tail lobes and the plasma sheet boundary layer. J. Geophys. Res. 2005, vol. 110, A10S11. DOI: 10.1029/2004JA010907.

12. Kepko L., Spence H.E., Singer H.J. ULF waves in the so¬lar wind as direct drivers of magnetospherc pulsations. Geo-phys. Res. Lett. 2002, vol. 29, p. 1197. DOI: 10.1029/ 2001GL014405.

13. Kepko L., Spence H.E. Observations of discrete, global magnetospheric oscillations directly driven by solar wind den¬sity variations. J. Geophys. Res. 2003, vol. 108, p. 1257. DOI: 10.1029/2002JA009676.

14. Kessel R.L., Mann I.R., Fung S.F., Milling D.K., O’Connell N. Correlation of Pc5 wave power inside and out¬side the magnetosphere during high speed streams. Ann. Geo-phys. 2004, vol. 22, pp. 629–641.

15. Kiselev B.V., Raspopov O.M., Excitation of Pi3 pulsa¬tions during substoms. Proc. IAGA Meeting of Unmanned Observatories in Antarctica. Tokyo. 1976, p. 88.

16. Klibanova Yu.Yu. Mishin V.V., Tsegmed B. Peculiarities in daytime observed during solar wind pulse against the background of the August 1, 1998 substorm. Kosmicheskie issledovaniya [Cosmic Res.]. 2014, vol. 52, no. 6. pp. 459–467. (In Russian).

17. Kostarev D.V., Mager P.N. Drift-compression waves propagating in the direction of energetic electron drift in the magnetosphere. Solar-Terrestrial Physics. 2017, vol. 3, no. 3, pp. 18–27. DOI: 10.12737/stp-33201703.

18. Kozlovsky A., Lakkala T., Kangas J., Aikio A. Response of the quiet auroral arc motion to ionospheric convection vari-ations. J. Geophys. Res. 2001. vol. 106, pp. 21463–21474.

19. Leonovich A.S., Mishin V.V., Cao J.B. Penetration of magnetosonic waves into the magnetosphere: influence of a transition layer. Annales Geophysicae. 2003, vol. 21, pp. 1083–1093.

20. Leonovich A.S., Mazur V.A., Kozlov D.A. MHD waves in the geomagnetic tail: A review. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2015, vol. 1, iss. 1, pp. 4–22. (In Russian).

21. Li W., Thorne R.M., Bortnik J., Nishimura Y., Angelo¬poulos V. Modulation of whistler mode chorus waves: 1. Role of compressional Pc4-5 pulsations. J. Geophys. Res. 2011, vol. 116, A06205. DOI: 10.1029/2010JA016312.

22. Mager P.N., Klimushkin D.Yu. Generation of Alfvén waves by a moving plasma inhomogeneity in the magnetosphere. Fizika plazmy [Plasma Physics Rep.]. 2007. vol. 33, no. 5, pp. 435–442.

23. Mager P.N., Klimushkin D.Yu., Kostarev D.V. Drift-com¬pressional modes generated by inverted plasma distributions in the magnetosphere. J. Geophys. Res. Space Phys., 2013, vol. 118, pp. 4915–4923. DOI: 10.1002/jgra.50471.

24. Makarov G.A., Solovyev S.I., Engebretson M., Yumoto K. Azimuth propagation of geomagnetic sudden pulse in high latitudes at the December 15, 1995 sharp decrease in a solar wind density. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2002, vol. 42, no. 1, pp. 42–50. (In Russian).

25. McKenzie J. F.: Hydromagnetic wave interaction with the magnetopause and the bow shock. Planetary and Space Sci¬. 1970, vol. 18, pp. 1–23.

26. Mishin V.V. Accelerated motions of the magnetopause as a trigger of the Kelvin_Helmholtz instability. J. Geophys. Res. 1993, vol. 98, no. A12, pp. 21365–21372.

27. Mishin V.V. On wave energy flux into the magnetosphere under the action of solar wind pressure pulsations. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. 1996. iss. 104. pp. 182–185. (In Russian).

28. Moiseev A.V., Baishev D.G., Mullayarov V.A., Sam-sonov S.N., Iozumi T., Ioshikawa A., et al. Development of compression long-period pulsations at the recovery phase of the May 23, 2007 magnetic storm. Kosmicheskie issledovaniya [Cosmic Res.]. 2016, vol. 54, no. 1, pp. 34–43. (In Russian).

29. Parkhomov V.А., Borodkova N.L., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Chilikin V.E. Solar wind diamagnetic structures as a source of substorm-like disturb¬ances. J. Atmos. Sol. Ter. Phys. 2018, vol. 181, pp. 55–67.

30. Parkhomov V.А., Mishin V.V., Leonovich A.S., Nikolaeva N.C., Solovyev S.I. Magnetospheric response in long-period geomagnetic pulsations observed during multiple crossing of the magnetopause by INTERBALL-1 satellite. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2005, iss. 8, pp. 161–163. (In Russian).

31. Pytte T., McPherron R.L., Hones E.W.Jr., West H.I.Jr. Multiple-satellite studies of magnetospheric substorms. III. Distinction between polar substorms and convection-driven negative bays. J. Geophys. Res. 1978, vol. 83, no. A2, pp. 663–679.

32. Reeves G.D., Henderson M.G., McLachlan P.S., Belian R.D., Friedel R.H.W., Korth A. Radial propagation of substorm injections. Proc. the Third International Conference on Substorms. Eur. Space Agency Spec. Publ., 1996, ESA SP‐389, pp. 579.

33. Rostoker G., Barichello J.C. Seasonal and diurnal varia¬tion of Ps6 magnetic disturbances. J. Geophys. Res. 1980, vol. 85, p. 161.

34. Russell A.J.B., Wright A.N., Streltsov A.V. Production of small-scale Alfvén waves by ionospheric depletion, nonlinear magnetosphere-ionosphere coupling and phase mixing. J. Geophys. Res. 2013, vol. 118, pp. 1450–1460. DOI: 10.1002/ jgra.50168.

35. Saito T. Long-period irregular magnetic pulsations, Pi3, Space Sci. Rev. 1978. p. 427.

36. Saito T., Matsushita S. Geomagnetic pulsations associated with sudden commencements and sudden impulses. Planet. Space Sci. 1967, vol. 15. pp. 573–587.

37. Sergeev V.A., Pellinen R.J., Pulkkinen T.I. Steady magnetospheric convection: A review of recent results. Space Sci. Rev. 1996, vol. 75, p. 551.

38. Solovyev S.I., Baishev D.G., Barkova E.S., Engebretson M.J., Posch J.L., Hughes W.J., Yumoto K., Pilipenko V.A. Structure of disturbances in the dayside and nightside iono¬sphere during periods of negative interplanetary magnetic field Bz. J. Geophys. Res.: Space Phys. 1999. V. 104. P. 28019–28039. DOI: 10.1029/1999JA900286.

39. Spanswick E., Donovan E., Liu W., Wallis D., Aasnes A., Hiebert T., Jackel B., Henderson M., Frey H. Substorm Asso-ciated Spikes in High Energy Particle Precipitation The Inner Magnetosphere: Physics and Modeling. Geophysical Mono¬graph Series, AGU, 2005, DOI: 10.1029/155GM24.

40. Van de Hulst H.C. Problems of Cosmical Aerodynam¬ics. Dayton, OH: Central Air Documents Office, 1951. p. 45.

41. Viall N.M., Kepko L., Spence H.E. Inherent length-scales of periodic solar wind number density structures. J. Geophys. Res. 2008, vol. 113, no. A07101. DOI: 10.1029/2007JA012881.

42. Woch J., Kremser G., Pokhotelov O.A., Pilipenko V.A., Amata E. Curvature-driven drift mirror instability in the magnetosphere. Planet. Space Sci. 1988. vol. 36. pp. 383–393.

43. Woch J., Kremser G., Korth A. A comprehensive investiga¬tion of compressional ULF waves observed in the ring current. J. Geophys. Res. 1990. vol. 95, pp. 15113–15132. DOI: 10.1029/JA095iA09p15113.

44. Wygant J.R., Keiling A., Cattell C.A., Lysak R.L., Temerin M., Mozer F.S., et al. Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 RE altitudes in the plasma sheet boundary layer. J. Geophys. Res. 2002, vol. 107, p. 1201. DOI: 10.1029/2001JA900113.

45. Yeoman T., Tian M., Lester M., Jones T.B. A study of Pc5 hydromagnetic waves with equatorward phase propagation. Planetary and Space Sci. 1992, vol. 40, no. 6. pp. 797–810.

46. Yeoman T.K., Wright D.M. ULF waves with drift reso¬nance and drift‐bounce resonance energy sources as observed in artificially‐induced HF radar backscatter. Ann. Geophys. 2000, vol. 19, pp.159–170.

47. URL: http://supermag.jhuapl.edu/mag (accessed March 12 2020).

48. URL: http://www.serc.kyushu-u.ac.jp/magdas (accessed March 12 2020).

49. URL: http://themis.ssl.berkeley.edu/gmag_desc.shtml (ac¬cessed March 12 2020).

50. URL: http://cdaweb.gsfc.nasa.gov (accessed March 12 2020).

51. URL: https://www.ngdc.noaa.gov/stp/satellite/goes/data-access.html (accessed March 12 2020).

52. URL: https://www.mathworks.com/help/signal/ref/filtfilt. html (ac¬cessed March 12 2020).

Войти или Создать
* Забыли пароль?