ДЕКАМЕТРОВЫЕ РАДАРЫ ИСЗФ СО РАН
Рубрики: ОБЗОРЫ
Аннотация и ключевые слова
Аннотация (русский):
В рамках проекта «Национальный гелиогеофизический комплекс Российской академии наук» планируется создание нескольких когерентных декаметровых радаров. Однако в Институте солнечно-земной физики (ИСЗФ) СО РАН работы по созданию когерентных декаметровых радаров проводились задолго до начала финансирования этого проекта. Это позволило получить опыт эксплуатации подобных радаров, выявить технологические проблемы, которые желательно решить при создании отечественных радаров, и разработать проект радаров, имеющих более широкие возможности по диагностике ионосферы по сравнению с существующими аналогичными радарами. В работе представлено описание радара EKB ИСЗФ СО РАН, рассмотрены его технические недостатки и предложена структура нового радара системы СЕКИРА. Приведены результаты макетирования элементов радара СЕКИРА, продемонстрировавшие возможность его реализации. Обсуждаются потенциальные возможности использования радара в задачах исследования ионосферы на территории Российской Федерации, в том числе в высокоширотных областях.

Ключевые слова:
декаметровый радар, SuperDARN, СЕКИРА, ионосфера, обратное рассеяние
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Arnold N.F., Cook P.A., Robinson T.R., Lester M., et al. Comparison of D-region Doppler drift winds measured by the SuperDARN Finland HF radar over an annual cycle using the Kiruna VHF meteor radar // Annales Geophysicae. 2003 V. 21, N 10. P. 2073-2082. DOI:https://doi.org/10.5194/angeo-21-2073-2003.

2. Barthes L., Andre D.A., Cerisier J.-C., Villain J.-P. Sepa¬ration of multiple echoes using a high-resolution spectral analysis for SuperDARN HF radars // Radio Sci. 1998. V. 33, N 4. P. 1005-1017. DOI:https://doi.org/10.1029/98rs00714.

3. Berngardt O.I., Zolotukhina N.A., Oinats A.V. Observa¬tions of field-aligned ionospheric irregularities during quiet and disturbed conditions with EKB radar: First results // Earth, Planets and Space. 2015a. V. 67, N 1. P. 143. DOI:https://doi.org/10.1186/s40623-015-0302-3.

4. Berngardt O.I., Perevalova N.P., Dobrynina A.A., et al. Toward the azimuthal characteristics of ionospheric and seis¬mic effects of “Chelyabinsk” meteorite fall according to the data from coherent radar, GPS, and seismic networks // J. Geophys. Res.: Space Phys. 2015b. V. 120, N 12. P. 10,754-10,771. DOI:https://doi.org/10.1002/2015JA021549.

5. Berngardt O.I., Kutelev K.A., Kurkin V.I., et al. Bistatic sounding of high-latitude ionospheric irregularities using a Decameter EKB Radar and an UTR-2 Radio Telescope: First results // Radiophysics and Quantum Electronics. 2015c. V. 58, N 6. P. 390-408. DOI:https://doi.org/10.1007/s11141-015-9614-1.

6. Berngardt O.I., Voronov A.L., Grkovich K.V. Optimal signals of Golomb ruler class for spectral measurements at EKB SuperDARN radar: Theory and experiment // Radio Sci. 2015d. V. 50, N 6. P. 486-500. DOI:https://doi.org/10.1002/2014RS005589.

7. Berngardt O.I., Kutelev K.A., Potekhin A.P. SuperDARN scalar radar equations // Radio Sci. 2016 V. 51, N 10. P. 1703-1724. DOI:https://doi.org/10.1002/2016rs006081.

8. Berngardt O.I., Ruohoniemi J.M., Nishitani N., et al. At¬tenuation of decameter wavelength sky noise during X-ray solar flares in 2013-2017 based on the observations of midlatitude HF radars // J. Atmos. Solar-Terr. Phys. 2018. V. 173. P. 1-13. DOI:https://doi.org/10.1016/j.jastp.2018.03.022.

9. Berngardt O.I., Ruohoniemi J.M., St-Maurice J.-P., et al. Global diagnostics of ionospheric absorption during X-ray solar flares based on 8- to 20-MHz noise measured by over-the-horizon radars // Space Weather. 2019a. V. 17, N 6. P. 907-924. DOI:https://doi.org/10.1029/2018SW002130.

10. Berngardt O.I., Fedorov R.R., Ponomarenko P., Grkovich K.V. Interferometric calibration and the first elevation obser¬vations at EKB ISTP SB RAS radar at 10-12 MHz // arXiv e-prints. 2019b. arXiv: 1912.05788 [physics.geo-ph].

11. Blanchard G.T., Sundeen S., Baker K.B. Probabilistic iden¬tification of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics // Radio Sci. 2009. V. 44, N 5, RS5012. DOI:https://doi.org/10.1029/2009rs004141.

12. Bland E.C., Heino E., Kosch M.J., Partamies N. SuperDARN radar-derived HF radio attenuation during the September 2017 solar proton events // Space Weather. 2018. V. 16, iss. 10. P. 1455-1469. DOI:https://doi.org/10.1029/2018sw001916.

13. Bristow W.A. Application of RADAR imaging analysis to SuperDARN observations // Radio Sci. 2019. V. 54, N 7. P. 692-703. DOI:https://doi.org/10.1029/2019rs006851.

14. Chakraborty S., Ruohoniemi J.M., Baker J.B.H., Nishitani N. Characterization of short-wave fadeout seen in daytime SuperDARN ground scatter observations // Radio Sci. 2018. V. 53, N 4. P. 472-484. DOI:https://doi.org/10.1002/2017RS006488.

15. Chelpanov M.A., Mager O.V., Mager P.N., et al. Proper¬ties of frequency distribution of Pc5-range pulsations observed with the Ekaterinburg decameter radar in the nightside iono¬sphere // J. Atmos. Solar-Terr. Phys. 2018. V. 167. P. 177-183. DOI:https://doi.org/10.1016/j.jastp.2017.12.002.

16. Chisham G. Calibrating SuperDARN interferometers us¬ing meteor backscatter // Radio Sci. 2018. V. 53, N 6. P. 761-774. DOI:https://doi.org/10.1029/2017RS006492.

17. Chisham G., Freeman M.P. A reassessment of SuperDARN meteor echoes from the upper mesosphere and lower thermo¬sphere // J. Atmos. Solar-Terr. Phys. 2013. V. 102. P. 207-221. DOI:https://doi.org/10.1016/j.jastp.2013.05.018.

18. Chisham G., Lester M., Milan S.E., et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques andfuture directions // Surv. Geophys. 2007. N 28. P. 33-109. DOI:https://doi.org/10.1007/s10712-007-9017-8.

19. Chizurumoke М.M., Yeoman T.K., Wright D.M., et al. A ray tracing simulation of HF ionospheric radar performance at African equatorial latitudes // Radio Sci. 2020. V. 55, N 2, e2019RS006936. DOI:https://doi.org/10.1029/2019rs006936.

20. Farley D.T. Multiple-pulse incoherent-scatter correlation function measurements // Radio Sci. 1972. V. 7, N 6. P. 661-666. DOI:https://doi.org/10.1029/rs007i006p00661.

21. Gillies R.G., Hussey G.C., Sofko G.J., et al. Improvement of HF coherent radar line-of-sight velocities by estimating the refractive index in the scattering volume using radar frequency shifting // J. Geophys. Res. 2011. V. 116, A01302. DOI:https://doi.org/10.1029/2010JA016043.

22. Greenwald R.A., Baker K.B., Dudeney J.R., et al. DARN/SuperDARN: A global view of the dynamics of high-latitude convection // Space Sci. Rev. 1995 V. 71. P. 761-796. DOI:https://doi.org/10.1007/BF00751350.

23. Greenwald R.A., Oksavik K., Barnes R., et al. First radar measurements of ionospheric electric fields at sub-second temporal resolution // Geophys. Res. Lett. 2008. V. 35, N 3, L03111. DOI:https://doi.org/10.1029/2007gl032164.

24. Ivanov V.A., Kurkin V.I., Nosov V.E., et al. Chirp ionosonde and its application in the ionospheric research // Radiophys. and Quant. Electron. 2003. V. 46, N 11. P. 821-851. DOI:https://doi.org/10.1023/B:RAQE.0000028576.51983.9c.

25. de Larquier S., Ponomarenko P., Ribeiro A.J., et al. On the spatial distribution of decameter-scale subauroral ionospheric irregularities observed by SuperDARN radars // J. Geophys. Res.: Space Phys. 2013. V. 118, N 8. P. 5244-5254. DOI:https://doi.org/10.1002/jgra.50475.

26. Lavygin I.A., Lebedev V.P., Grkovich K.V., Berngardt O.I.. Identifying ground scatter and ionospheric scatter signals by using their fine structure at Ekaterinburg Decametre Coherent Radar // IET Radar, Sonar & Navigation. 2020. V. 14, N 1. P. 167-176. DOI:https://doi.org/10.1049/iet-rsn.2019.0192.

27. Lester M., Chapman P., Cowley S.W.H., et al. Stereo CUTLASS - A new capability for the SuperDARN HF radars // Ann. Geophysicae. 2004. V. 22, N 2. P. 459-473. DOI:https://doi.org/10.5194/angeo-22-459-2004.

28. Mager P.N., Berngardt O.I., Klimushkin D.Yu., et al. First results of the high-resolution multibeam ULF wave experi¬ment at the Ekaterinburg SuperDARN radar: Ionospheric signatures of coupled poloidal Alfv´en and drift-compres¬sional modes // J. Atmos. Solar-Terr. Phys. 2015. V. 130-131. P. 112-126. DOI:https://doi.org/10.1016/j.jastp.2015.05.017.

29. Mager O.V., Chelpanov M.A., Mager P.N., et al. Conjugate ionosphere-magnetosphere observations of a sub-Alfvenic com¬pressional intermediate-m wave: A case study using EKB radar and Van Allen probes // J. Geophys. Res.: Space Phys. 2019. V. 124, N 5. P. 3276-3290. DOI:https://doi.org/10.1029/2019JA026541.

30. Nishitani N., Ruohoniemi J.M., Lester M., et al. Review of the accomplishments of mid-latitude Super Dual Auroral Ra¬dar Network (SuperDARN) HF radars // Progress in Earth and Planet. Sci. 2019. V. 6, N 1. P. 27. DOI:https://doi.org/10.1186/s40645-019-0270-5.

31. Oinats A., Nishitani N., Ponomarenko P., et al. Statistical characteristics of medium-scale traveling ionospheric disturb¬ances revealed from the Hokkaido East and Ekaterinburg HF radar data // Earth, Planets and Space. 2016. V. 68, N 1. P. 8. DOI:https://doi.org/10.1186/s40623-016-0390-8.

32. Ponomarenko P.V., St-Maurice J.-P., Waters C.L., et al. Refractive index effects on the scatter volume location and Doppler velocity estimates of ionospheric HF backscatter echoes // Ann. Geophys. 2009. V. 27. P. 4207-4219. DOI:https://doi.org/10.5194/angeo-27-4207-2009.

33. Ponomarenko P., Nishitani N., Oinats A.V., et al. Appli¬cation of ground scatter returns for calibration of HF interfer¬ometry data // Earth, Planets and Space. 2015. V. 67, N 1. P. 138. DOI:https://doi.org/10.1186/s40623-015-0310-3.

34. Ponomarenko P.V., St-Maurice J.-P., McWilliams K.A. Calibrating HF radar elevation angle measurements using E layer backscatter echoes // Radio Sci. 2018. V. 53, N 11. P. 1438-1449. DOI:https://doi.org/10.1029/2018rs006638.

35. Ribeiro A.J., Ruohoniemi J.M., Baker J.B.H., et al. A new approach for identifying ionospheric backscatter in midlatitude SuperDARN HF radar observations // Radio Sci. 2011. V. 46, RS4011. DOI:https://doi.org/10.1029/2011RS004676.

36. Ribeiro A.J., Ruohoniemi J.M., Ponomarenko P.V., et al. A comparison of SuperDARN ACF fitting methods // Radio Sci. 2013.V. 48, N 3. P. 274-282. DOI:https://doi.org/10.1002/rds.20031.

37. Robinson T.R., McCrea I.W., van Eyken A.P., et al. First observations of SPEAR-induced artificial backscatter from CUTLASS and the EISCAT Svalbard radars // Ann. Geophys. 2006. V. 24, iss. 1. P. 291-309. DOI:https://doi.org/10.5194/angeo-24-291-2006.

38. RST - Radar Software Toolkit. 2019. URL: https://github.com/SuperDARN/rst (дата обращения 20 ноября 2019 г.).

39. Spaleta J., Bristow W.A., Parris R.T., et al. Enhanced Line of Sight Velocity Analysis Using an Aperiodic Pulse Sequence on the Kodiak and King Salmon Radars // SuperDARN 2008 Workshop. 02-06 June 2008, Newcastle, Australia. 2008. URL: http://www.tiger.latrobe.edu.au/super-darn2008/procCD/presentations/1070.pdf (дата обращения 20 ноября 2019 г.).

40. Vertogradov G.G., Uryadov V.P., Vertogradova E.G., et al. Chirp ionosonde-radiodirection finder as a new tool for studying the ionosphere and radio-wave propagation // Radiophys. and Quant. Electron. 2013. V. 56, N 5. P. 259-275. DOI:https://doi.org/10.1007/s11141-013-9431-3.

41. URL: vt.superdarn.org (дата обращения 20 ноября 2019 г.).

Войти или Создать
* Забыли пароль?