MODULATION OF SPORADIC E LAYERS BY SMALL-SCALE ATMOSPHERIC WAVES IN EARTH’S HIGH-LATITUDE IONOSPHERE
Аннотация и ключевые слова
Аннотация (русский):
We have used radio occultation measurements of the satellite CHAMP (Challenging Minisatellite Payload) to examine sporadic E layers (altitudes 90–130 km) in Earth’s high-latitude ionosphere. We have developed a new method for determining characteristics of internal atmospheric waves based on the use of inclined sporadic E layers of Earth’s ionosphere as a detector. The method relies on the fact that an internal wave propagating through the initially horizontal sporadic E layer causes the plasma density gradient to rotate in the direction of the wave vector, which leads to the fact that the layer ionization plane is set parallel to the phase wave front. The developed method enables us to study the interrelations between small-scale internal waves and sporadic E layers in Earth’s ionosphere and significantly expands the capabilities of traditional radio occultation monitoring of the atmosphere. We have found that the internal atmospheric waves under study have periods from 35 to 46 min and vertical phase speeds from 1.2 to 2.0 m/s, which are in good agreement with the results of independent experiments and simulation data on sporadic E layers at a height of ~100 km in Earth’s polar cap.

Ключевые слова:
radio occultation measurements, Earth’s atmosphere and ionosphere, inclined sporadic E layers, internal atmospheric waves
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Arras C., Wickert J., Beyerle G., Heise S., Schmidt T., Jacobi C. A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys. Res. Lett. 2008, vol. 35, L14809. DOI:https://doi.org/10.1029/2008GL03415.

2. Bernhardt P.A. The modulation of sporadic-E layers by Kelvin-Helmholtz billows in the neutral atmosphere. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, pp. 1487-1504.

3. Bernhardt P.A., Selcher C.A., Siefring C., Wilkens M., Compton C., Bust G. Yamamoto M., Fukao S., Takayuki O., Wakabayashi M., Mori H. Radio tomographic imaging of sporadic-E layers during SEEK-2. Ann. Geophys. 2005, vol. 23, pp. 2357-2368. DOI:https://doi.org/10.5194/angeo-23-2357-2005.

4. Bristow W.A., Watkins B.J. Numerical simulation of the formation of thin ionization layers at high latitudes. Geophys. Res. Lett. 1991, vol. 18, pp. 404-407.

5. Bristow W.A., Watkins B.J. Incoherent scatter observations of thin ionization layers at Sondrestrom. J. Atmos. Terr. Phys. 1993, vol. 55, pp. 873-894.

6. Chimonas G. Enhancement of sporadic E by horizontal transport within the layer. J. Geophys. Res. 1971, vol. 76, pp. 4578-4586.

7. Chimonas G., Axford W.I. Vertical movement of temperate-zone sporadic E layers. J. Geophys. Res. 1968, vol. 73, pp. 111-117.

8. Chu Y.-H., Brahmanandam P.S., Wang C.-Y., Ching-Lun S., Kuong R.-M. Coordinated sporadic E layer observations made with Chung-Li 30 MHz radar, ionosonde and FORMOSAT-3/COSMIC satellites. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, pp. 883-894. DOI:https://doi.org/10.1016/j.jastp.2010.10.004.

9. Cosgrove R.B., Tsunoda R.T. A direction-dependent instability of sporadic-E layers in the nighttime midlatitude ionosphere. Geophys. Res. Lett. 2002, vol. 29, no. 18. 1864. DOI:https://doi.org/10.1029/2002GL014669.

10. Cosgrove R.B., Tsunoda R.T. Instability of the E-F coupled nighttime midlatitude ionosphere. J. Geophys. Res. 2004, vol. 10, no. A04305. DOI:https://doi.org/10.1029/2003JA010243.

11. Cox R.M., Plane J.M.C. An ion-molecule mechanism for the formation of neutral sporadic Na layers. J. Geophys. Res. 1998, vol. 103, no. D6, pp. 6349-6359. DOI:https://doi.org/10.1029/97JD03376.

12. Didebulidze G.G., Lomidze L.N. Double atmospheric gravity wave frequency oscillations of sporadic E formed in a horizontal shear flow. Phys. Lett. A. 2010, vol. 374, no. 7. pp. 952-969. DOI:https://doi.org/10.1016/j.physleta.2009.12.026.

13. Gossard E.E, Hooke W.H. Waves in the Atmosphere. Amsterdam, Oxford, New York, Elsevier Scientific Publishing Co., 1975, 471 p.

14. Gubenko V.N., Kirillovich I.A. Diagnostics of internal atmospheric wave saturation and determination of their characteristics in Earth’s stratosphere from radiosonde measurements. Solar-Terr. Phys. 2018, vol. 4, no 2, pp. 41-48. DOI:https://doi.org/10.12737/stp-42201807.

15. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement. J. Geophys. Res. 2008. vol. 113, no. D08109. DOI:https://doi.org/10.1029/2007JD008920.

16. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere. Atmos. Meas. Tech. 2011, vol. 4, no. 10, pp. 2153-2162. DOI:https://doi.org/10.5194/amt-4-2153-2011.

17. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere. Cosmic Res. 2012, vol. 50, no. 1, pp. 21-31. DOI:https://doi.org/10.1134/S0010952512010029.

18. Gubenko V.N., Kirillovich I.A., Pavelyev A.G. Characteristics of internal waves in the Martian atmosphere obtained on the basis of an analysis of vertical temperature profiles of the Mars Global Surveyor mission. Cosmic Res. 2015, vol. 53, no. 2, pp. 133-142. DOI:https://doi.org/10.1134/S0010952515020021.

19. Gubenko V.N., Kirillovich I.A. Pavelyev A.G., Andreev V.E. Detection of saturated internal gravity waves and reconstruction of their characteristics in the Martian atmosphere. Izvestiya vysshikh uchebnykh zavedenii. Fizika [Russian Physics Journal]. 2016a, vol. 59, no. 12-2, pp. 46-49. (In Russian).

20. Gubenko V.N., Kirillovich I.A., Liou Y.-A., Pavelyev A.G. Monitoring of internal gravity waves in the Arctic and Antarctic atmosphere. Izvestiya vysshikh uchebnykh zavedenii. Fizika [Russian Physics Journal]. 2016b, vol. 59, no. 12-3, pp. 80-85. (In Russian).

21. Gubenko V.N., Pavelyev A.G., Kirillovich I.A., Liou Y.-A. Case study of inclined sporadic E layers in the Earth’s ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves. Adv. Space Res. 2018, vol. 61, no 7, pp. 1702-1716. DOI:https://doi.org/10.1016/j.asr.2017.10.001.

22. Haldoupis C.A. Tutorial review on sporadic E layers. Aeronomy of the Earth’s Atmosphere and Ionosphere. Berlin, Springer, 2011, pp. 381-394. (IAGA Special Sopron Book Series 2). DOI:https://doi.org/10.1007/978-94-007-0326-1-2.

23. Haldoupis C. Midlatitude sporadic E layers. A typical paradigm of atmosphere-ionosphere coupling. Space Sci. Rev. 2012, vol. 168, pp. 441-461. DOI:https://doi.org/10.1007/s11214-011-9786-8.

24. Heinselman C.J., Thayer J.P., Watkins B.J. A high-latitude observation of sporadic sodium and sporadic E-layer formation. Geophys. Res. Lett. 1998, vol. 25, pp. 3059-3062. DOI:https://doi.org/10.1029/98GL02215.

25. Hines C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, vol. 38, pp. 1441-1481.

26. Hunten D.M., Turco R.P., Toon O.B. Smoke and dust particles of meteoric origin in the mesosphere and stratosphere. J. Atmos. Sci. 1980, vol. 37, pp. 1342-1357.

27. Hysell D.L., Yamamoto M., Fukao S. Imaging radar observations and theory of type I and type II quasi-periodic echoes. J. Geophys. Res. 2002, vol. 107, no. A11, 1360. DOI:https://doi.org/10.1029/2002JA009292.

28. Hysell D.L., Larsen M.F., Zhou Q.H. Common volume coherent and incoherent scatter radar observations of mid-latitude sporadic E-layers and QP echoes. Ann. Geophys. 2004, vol. 22, pp. 3277-3290. DOI:https://doi.org/10.5194/angeo-22-3277-2004.

29. Hysell D.L., Nossa E., Larsen M.F., Munro J., Sulzer M.P., González S.A. Sporadic E layer observations over Arecibo using coherent and incoherent scatter radar: Assessing dynamic stability in the lower thermosphere. J. Geophys. Res. 2009, vol. 114, no. A12303. DOI:https://doi.org/10.1029/2009JA014403.

30. Igarashi K., Pavelyev A.G., Hocke K., Pavelyev D., Wickert J. Observation of wave structures in the upper atmosphere by means of radio holographic analysis of the radio occultation data. Adv. Space Res. 2001, vol. 27, pp. 1321-1327. DOI:https://doi.org/10.1016/s0273-1177(01)00144-2.

31. Kato S., Reddy C.A., Matsushita S. Possible hydromagnetic coupling between the perturbations of the neutral and ionized atmosphere. J. Geophys. Res. 1970, vol. 75, pp. 2540-2550.

32. Kelley M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics. Second Edition. San Diego, Academic Press, 2009, 556 p.

33. Kirkwood S., Collis P.N. Gravity wave generation of simultaneous auroral sporadic-E layers and sudden neutral sodium layers. J. Atmos. Terr. Phys. 1989, vol. 51, no. 4, pp. 259-269.

34. Kirkwood S., von Zahn U. On the role of auroral electric fields in the formation of low altitude sporadic-E and sudden sodium layers. J. Atmos. Terr. Phys. 1991, vol. 53, pp. 389-407.

35. Kirkwood S., von Zahn U. Formation mechanisms for lowaltitude Es and their relationship with neutral Fe layers: Results from the METAL campaign. J. Geophys. Res. 1993, vol. 98, pp. 21549-21561.

36. Kirkwood S., Nilsson H. High-latitude sporadic-E and other thin layers - the role of magnetospheric electric fields. Space Sci. Rev. 2000, vol. 91, pp. 579-613. DOI:https://doi.org/10.1023/A: 1005241931650.

37. Larsen M.F. A shear instability seeding mechanism for quasiperiodic radar echoes. J. Geophys. Res. 2000, vol. 105, no. A11, pp. 24931-24940. DOI:https://doi.org/10.1029/1999JA000290.

38. Larsen M.F., Fukao S., Yamamoto M., Tsunoda R., Igarashi K., Ono T. The SEEK chemical release experiment: Observed neutral wind profile in a region of sporadic-E. Geophys. Res. Lett. 1998, vol. 25, pp. 1789-1792. DOI:https://doi.org/10.1029/98GL00986.

39. Larsen M.F., Yamamoto M., Fukao S., Tsunoda R.T. SEEK 2: Observations of neutral winds, wind shears, and wave structure during a sporadic E/QP event. Ann. Geophys. 2005, vol. 23, pp. 2369-2375. DOI:https://doi.org/10.5194/angeo-23-2369-2005.

40. Larsen M.F., Hysell D.L., Zhou Q.H., Smith, S.M., Friedman, J., Bishop, R.L. Imaging coherent scatter radar, incoherent scatter radar, and optical observations of quasiperiodic structures associated with sporadic E layers. J. Geophys. Res. 2007, vol. 112, no. A06321. DOI:https://doi.org/10.1029/2006JA012051.

41. Lehmacher G.A., Larsen M.F., Croskey C.L. Observation of electron biteout regions below sporadic E layers at polar latitudes. Ann. Geophys. 2015, vol. 33, pp. 371-380. DOI:https://doi.org/10.5194/angeo-33-371-2015.

42. MacDougall J.W., Jayachandran P.T., Plane J.M.C. Polar cap sporadic-E: part 1, observations. J. Atmos. Solar-Terr. Phys. 2000a, vol. 62, pp. 1155-1167. DOI:https://doi.org/10.1016/S1364-6826(00) 00093-6.

43. MacDougall J.W., Plane J.M.C., Jayachandran P.T. Polar cap sporadic-E: part 2, modeling. J. Atmos. Solar-Terr. Phys. 2000b, vol. 62, pp. 1169-1176. DOI:https://doi.org/10.1016/S1364-6826(00)00092-4.

44. Malhotra A., Mathews J.D., Urbina J. Effect of meteor ionization on sporadic-E observed at Jicamarca. Geophys. Res. Lett. 2008, vol. 35, L15106. DOI:https://doi.org/10.1029/2008GL034661.

45. Maruyama T., Fukao S., Yamamoto M. A possible mechanism for echo striation generation of radar backscatter from midlatitude sporadic E. Radio Sci. 2000, vol. 35, pp. 1155-1164. DOI:https://doi.org/10.1029/1999RS002296.

46. Maruyama T., Kato H., Nakamura M. Ionospheric effects of the Leonid meteor shower in November 2001 as observed by rapid run ionosondes. J. Geophys. Res. 2003, vol. 108, no. A8. 1324. DOI:https://doi.org/10.1029/2003JA009831.

47. Maruyama T., Kato H., Nakamura M. Meteor-induced transient sporadic E as inferred from rapid-run ionosonde observations at midlatitudes. J. Geophys. Res. 2008, vol. 113, A09308. DOI:https://doi.org/10.1029/2008JA013362.

48. Mathews J.D. Sporadic E: Current views and recent progress. J. Atmos. Solar-Terr. Phys. 1998, vol. 60, no. 4, pp. 413-435. DOI:https://doi.org/10.1016/S1364-6826(97)00043-6.

49. Nygren T., Jalonen L., Oksman J., Turunen T. The role of electric field and neutral wind direction in the formation of sporadic E-layers. J. Atmos. Terr. Phys. 1984, vol. 46, pp. 373-381.

50. Ogawa T., Takahashi O., Otsuka Y., Nozaki K., Yamamoto M., Kita K. Simultaneous middle and upper atmosphere radar and ionospheric sounder observations of midlatitude E region irregularities and sporadic E layer. J. Geophys. Res. 2002, vol. 107, no. A10, 1275. DOI:https://doi.org/10.1029/2001JA900176.

51. Otsuka Y., Shiokawa K., Ogawa T., Yokoyama T., Yamamoto M. Spatial relationship of nighttime medium-scale traveling ionospheric disturbances and F region field-aligned irregularities observed with two spaced all-sky airglow imagers and the middle and upper atmosphere radar. J. Geophys. Res. 2009, vol. 114, A05302. DOI:https://doi.org/10.1029/2008JA013902.

52. Pavelyev A.G., Liou Y.A., Wickert J., Gubenko V.N., Pavelyev A.A., Matyugov S.S. New applications and advances of the GPS Radio Occultation Technology as recovered by analysis of the FORMOSAT-3/COSMIC and CHAMP data-base. New Horizons in Occultation Research: Studies in Atmosphere and Climate. Berlin, Heidelberg, Springer-Verlag, 2009, pp. 165-178. DOI:https://doi.org/10.1007/978-3-642-00321_9.

53. Pavelyev A.G., Liou Y.A., Zhang K., Wang C.S., Wickert J., Schmidt T., Gubenko V.N., Pavelyev A.A., Kuleshov Y. Identification and localization of layers in the ionosphere using the eikonal and amplitude of radio occultation signals. Atmos. Meas. Tech. 2012, vol. 5, no. 1, pp. 1-16. DOI:https://doi.org/10.5194/amt-5-1-2012.

54. Pavelyev A.G., Liou Y.A., Matyugov S.S., Pavelyev A.A., Gubenko V.N., Zhang K., Kuleshov Y. Application of the locality principle to radio occultation studies of the Earth’s atmosphere and ionosphere. Atmos. Meas. Tech. 2015, vol. 8, no. 7, pp. 2885-2899. DOI:https://doi.org/10.5194/amt-8-2885-2015.

55. Roddy P.A. Earle G.D., Swenson C.M., Carlson C.G., Bullett T.W. Relative concentrations of molecular and metallic ions in midlatitude intermediate and sporadic-E layers. Geophys. Res. Lett. 2004, vol. 31, no. L19807. DOI:https://doi.org/10.1029/2004 GL020604.

56. Saito S., Yamamoto M., Hashiguchi H., Maegawa A. Observation of three-dimensional structures of quasi-periodic echoes associated with mid-latitude sporadic-E layers by MU radar ultra-multi-channel system. Geophys. Res. Lett. 2006, vol. 33, no. L14109. DOI:https://doi.org/10.1029/2005GL025526.

57. Tsunoda R.T., Cosgrove R.B. Coupled electrodynamics in the nighttime midlatitude ionosphere . Geophys. Res. Lett. 2001, vol. 8, pp. 4171-4174. DOI:https://doi.org/10.1029/2001GL013245.

58. Tsunoda R.T., Fukao S. Yamamoto M. On the origin of quasiperiodic radar backscatter from midlatitude sporadic E. Radio Sci. 1994, vol. 29, pp. 349-366.

59. Turunen T., Nygren T., Huuskonen A. Nocturnal high-latitude E-region in winter during extremely quiet conditions. J. Atmos. Terr. Phys. 1993, vol. 55, pp. 783-795.

60. Whitehead J.D. Ionization disturbances caused by gravity waves in the presence of an electrostatic field and background wind. J. Geophys. Res, 1971. vol. 76, pp. 238-241.

61. Whitehead J.D. Recent work on midlatitude and equatorial sporadic E. J. Atmos. Terr. Phys. 1989, vol. 51, pp. 401-424. DOI:https://doi.org/10.1016/0021-9169(89)90122-0.

62. Woodman R.F., Yamamoto M., Fukao S. Gravity wave modulation of gradient drift instabilities in mid-latitude sporadic E irregularities. Geophys. Res. Lett. 1991, vol. 18, pp. 1197-1200. DOI:https://doi.org/10.1029/91GL01159.

63. Wu D.L., Ao C.O., Hajj G.A., de la Torre Juarez M., Mannucci A.J. Sporadic E morphology from GPS-CHAMP radio occultations. J. Geophys. Res. 2005, vol. 110, no. A01306. DOI:https://doi.org/10.1029/2004JA010701.

64. Yamamoto M., Fukao S., Woodman R.F., Ogawa T., Tsuda T., Kato K. Mid-latitude E region field-aligned irregularities observed with the MU radar. J. Geophys. Res.: Space. 1991, vol. 96, pp. 15943-15949.

65. Yamamoto M., Fukao S., Ogawa T., Tsuda T., Kato S. A morphological study of mid-latitude E-region field-aligned irregularities observed with the MU radar. J. Atmos. Solar-Terr. Phys. 1992, vol. 54, pp. 769-777.

66. Yamamoto M., Fukao S., Tsunoda R.T., Pfaff R., Hayakawa H. SEEK-2 (Sporadic-E Experiment over Kyushu 2) - Project Outline, and Significance. Ann. Geophys. 2005, vol. 23, pp. 2295-2305. DOI:https://doi.org/10.5194/angeo-23-2295-2005.

67. Yokoyama T., Yamamoto M., Fukao S., Cosgrove R.B. Three-dimensional simulation on generation of polarization electric field in the midlatitude E-region ionosphere. J. Geophys. Res. 2004, vol. 109, no. A01309. DOI:https://doi.org/10.1029/2003JA010238.

68. Yokoyama T., Yamamoto M., Fukao S., Takahashi T., Tanaka M. Numerical simulation of mid-latitude ionospheric E-region based on SEEK and SEEK-2 observations. Ann. Geophys. 2005, vol. 23, no. 7, pp. 2377-2384. DOI: 10.5194/ angeo-23-2377-2005.

69. Yokoyama T., Hysell D.L., Otsuka Y., Yamamoto M. Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res. 2009, vol. 114, no. A03308. DOI: 10.1029/ 2008JA013789.

70. Yue X., Schreiner W.S., Zeng Z., Kuo Y.-H., Xue X. Case study on complex sporadic E layers observed by GPS radio occultations. Atmos. Meas. Tech. 2015, vol. 8, pp. 225-236. DOI:https://doi.org/10.5194/amt-8-225-2015.

71. Zeng Z., Sokolovskiy S. Effect of sporadic E cloud on GPS radio occultation signal. Geophys. Res. Lett. 2010, vol. 37, no. L18817. DOI:https://doi.org/10.1029/2010GL044561.

Войти или Создать
* Забыли пароль?