Попытки модельного описания динамики поведения функциональных систем организма человека традиционно базировались на моделях периодических и квазипериодических процессов (дыхание, работа сердца, биопотенциалы мозга и т.д.). В рамках теории хаоса-самоорганизации предполагается другой подход для описания якобы произвольных или непроизвольных периодических или квазипериодических движений и любых других динамических процессов (в норме и при патологии) в организме человека. При этом показано, что часто нормой является хаотическая динамика поведения вектора состояния организма человека, а периодические или стационарные режимы динамики – характерны для патологии, при этом в медицине длительное время были диаметрально противоположные представления. В работе представлена иллюстрация применения метода расчета квазиаттракторов в оценке ряда биомеханических процессов (прицеливание и болезнь Паркинсона). Показана информационная значимость этого метода.
теория хаоса и самоорганизации, квазиаттрактор, параметр порядка, системы третьего типа
Юнеско и Россия широко отметили 150 лет со дня рождения В.И. Вернадского. Владимир Иванович, создавая теорию ноосферизма, подошел к фундаментальному осознанию реальности биосистем, находящихся в хаосе и самоорганизации. Ноосфера в представлениях Вернадского уже требовала осознанного управления своей динамикой со стороны человечества. Одновременно в физиологии к этому познанию подошел и П.К. Анохин – он ввел понятие самоорганизующихся функциональных систем организма (ФСО). Таким образов оба великих русских ученых (с разных сторон) подошли к пониманию особенностей сложных биосистем, которые позже определили как complexity, а мы сейчас в ТХС говорим и системах третьего типа (СТТ).
В рамках разрабатываемой новой теории хаоса-самоорганизации (ТХС) для описания динамики поведения сложных биосистем, к которым в первую очередь относятся ФСО человека, предлагается новый подход в изучении и понимании состояния нормы и патологии организма человека. Традиционно квазипериодические процессы в виде тремора, теппинга, работы кардио-респираторной ФСО, генерации различных биопотенциалов (мозга, мышц, нервов) описывались в виде их амплитудно-частотных характеристик (АЧХ), автокорреляционных функций и различных законов распределения. Однако, сейчас в рамках ТХС доказывается бесперспективность таких методов в описании динамики сложных биосистем – complexity (ФСО, в частности) [3-6,7-9].
1. Бернштейн Н.А. Физиология движений и активность. М.: Наука, 1990. С. 373-392.
2. Владимир Иванович Вернадский и Лев Николаевич Гумилев: Великий Синтез творческих наследий (коллективная научная монография). Кострома: КГУ им. Н.А. Некрасова, 2012. 662 с.
3. Еськов В.М., Кулаев С.В., Попов Ю.М., Филатова О.Е. Применение компьютерных технологий при измерении нестабильности в стационарных режимах биологических динамических систем // Измерительная техника. 2006. № 1. С. 40-45.
4. Еськов В.М., Хадарцев А.А., Еськов В.В., Гаврилен-ко Т.В., Филатов М.А. Complexity - особый тип биомедицинских и социальных систем // Вестник новых медицинских технологий. 2013. Т. 20. № 1. С. 17-22.
5. Еськов В.М., Буров И.В., Филатова О.Е., Хадарцев А.А. Основы биоинформационного анализа динамики микрохаотического поведения биосистем // Вестник новых медицинских технологий. 2012. Т. 19. №1. С.15-18.
6. Майнцер К.. Сложносистемное мышление: Материя, разум, человечество. Новый синтез / Под. ред. Г.Г. Малинецкого. М.: Книжный дом «ЛИБРОКОМ», 2009. 464 с.
7. Хакен Г. Принципы работы головного мозга: Синергетический подход к активности мозга, поведению и когнитивной деятельности. М.: ПЕР СЭ, 2001. 351 с.
8. Eskov V.M., Eskov V.V., Filatova O.E. Characteristic features of measurements and modeling for biosystems in phase spaces of states // Measurement Techniques. 2011. V. 53. №12. P. 1404-1410.
9. Eskov V. М, Eskov V.V., Filatova O.E., Filatov M.A. Two types of systems and three types of paradigms in systems philosophy and system science // Journal of Biomedical Science and Engineering. 2012. Vol. 5. № 10. P. 602.
10. Eskov V.M., Khadartsev A.A., Eskov V.V., Filatova O.E., Filatova D.U. Chaotic approach in biomedicine: Individualized medical treatment // Journal of Biomedical Science and Engineering. 2013. Vol. 6. P. 847-853.
11. Filatov M.A., Filatova D.Y., Himikova O.I., Romanova J.V. Matrixes of quasiattractor distances at identification of human psychophysiology function // Complexity.Mind.Postnonclassic. 2012. Vol. 1. P.19-24.
12. Jobbagy A., Harcos P., Karoly R., Fazekas G. Analysis of finger-tapping movement // Journal of Neuroscience Methods. 2005. Vol. 141. P. 29-39.
13. Gavrilenko T.V., Baltikova A.A., Degtyarev D.A., Pashnin A.S. The comparison of the efficiency of classic stochastic theory and theory of chaos-selforganization (TCS) // Complexity. Mind. Postnonclassic. 2012. 1. P.81-91.
14. Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, Justin D. Foster, Paul Nuyujukian, Stephen I. Ryu, Krishna V. Shenoy. Neural population dynamics during reaching // Nature. 2012. Vol. 487. P. 51-58.
15. Prigogine I.R. The Die Is Not Cast // Futures. Bulletin of the World Future Studies Federation. 2000. Vol. 25. № 4. P.17-19.