Институт физики атмосферы им. А.М. Обухова РАН
Москва, Россия
Институт физики Земли им. О.Ю. Шмидта РАН
Геофизический Центр РАН
Москва, Россия
Москва, Россия
Москва, Россия
УДК 55 Геология. Геологические и геофизические науки
The article considers the influence of large atmospheric processes on the ionosphere by the example of tropical typhoon Vongfong 2014. We use data obtained from three SWARM satellite missions (450–500 km altitude). We discuss two possible mechanisms of transfer of atmospheric disturbances to ionospheric heights. The first mechanism is the generation of acoustic-gravity waves (AGWs); the second mechanism considers the excitation of electric fields in the atmosphere. We propose new techniques for detecting the ionospheric response to AGW, which rely on low-orbit satellite data. The first technique is based on determination of relative electron density variations in the frequency band from 15 to 150–180 s, corresponding to certain scales of AGW. The second technique estimates space-time derivatives of the electron density, measured by two nearby SWARM satellites. We present and estimate the characteristic magnitudes of ionospheric response effects, their localization and spatial-temporal characteristics for the large tropical cyclone under study.
tropical cyclone, ionosphere, electron density, acoustic-gravity wave, Swarm, equatorial anomaly
1. Afraimovich E.L., Voyeikov S.V., Ishin A.B., Perevalova N.P., Ruzhin Yu.Ya. Total electron content variations during the powerful typhoon of August 5-11, 2006, near the southeastern coast of China. Geomagnetism and Aeronomy. 2008, vol. 48, no. 5, pp. 674-679.
2. Afraimovich E.L., Perevalova N.P. GPS-monitoring verkhnei atmosfery Zemli [GPS monitoring of the Earth’s upper atmosphere]. Irkutsk, 2006, 480 p. (In Russian).
3. Balan N., Souza J., Bailey G.J. Recent developments in the understanding of equatorial ionization anomaly: A review. J. Atm. Solar-Terr. Phys. 2018, vol. 171, pp. 3-11.
4. Bertin E., Testud У., Kersley L. Medium scale gravity waves in the ionospheric F region and their possible origin in weather disturbances. Planet. Space Sci. 1975, vol. 23, pp. 493-507.
5. Bondur V.G., Pulinets S.A., Uzunov D. The effect of large-scale atmospheric vortex processes on the ionosphere using hurricane Katrina as an example. Issledovaniya Zemli iz kosmosa [Izvestiya, Atmospheric and Oceanic Physics]. 2008, no. 6, pp. 3-11. (In Russian).
6. Chou M.Y., Lin C.H., Yue J., Chang L.C., Tsai H.F., Chen C.H. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett. 2017, vol. 44, pp. 7569-7577. DOI:https://doi.org/10.1002/2017GL073961.
7. Danilov A.D., Kazimirovsky E.S., Vergasova G.V., Khachikyan G.Ya. Meteorologicheskie effekty v ionosfere [Meteorological Effects in the Ionosphere]. Leningrad, Gidrometeoizdat Publ., 1987, 267 p. (In Russian).
8. Drobyazko I.N., Krasil’nikov V.N. Generation of acoustic-gravity waves by atmospheric turbulence. Radiophysics and Quantum Electronics. 1985, vol. 28, no. 11, pp. 946-952.
9. Forbes J.М., Palo S.E., Zhang X. Variability of the ionosphere. J. Atm. Solar-Terr. Phys. 2000, vol. 62, pp. 685-693. DOI:https://doi.org/10.1016/S1364-6826(00)00029-8.
10. Gokhberg M.B., Pilipenko V.A., Pokhotelov O.A., Fedorov E.N. Electromagnetic ELF-noise bursts in the upper atmosphere induced by ground explosions. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1996, vol. 36, no. 4, pp. 61-67. (In Russian).
11. Gossard E.E., Hooke W.H. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation. Elsevier Scientific Publ. Co., 1975, 456 p.
12. Ho C.M., Mannucci A.J., Lindqwister U.J., Pi X., Tsurutani B.T. Global ionosphere perturbations monitored by the worldwide GPS network. Geophys. Res. Lett. 1996, vol. 23, iss. 22, pp. 3219-3222. DOI:https://doi.org/10.1029/96GL02763.
13. Hocke K., Schlegel K. A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982-1995. Ann. Geophys. 1996, vol. 14, iss. 9, pp. 917-940. DOI: 10.1007/ s00585-996-0917-6.
14. Hofman-Wellenhoft B., Lichtenegger H., Collins J. GPS Theory and Practice. New York, Springer-Verlag Vienna, 1992, 347 p.
15. Huang Y.N., Cheng K., Chen S.W. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci. 1985, vol. 20, no. 4, pp. 897-906. DOI:https://doi.org/10.1029/RS020i004p00897.
16. Isaev N.V., Sorokin V.M., Chmyrev V.M., Serebryakova O.N. Ionospheric electric fields related to sea storms and typhoons. Geomagnetism and Aeronomy. 2002, vol. 42, no. 5, pp. 638-643.
17. Isaev N.V., Kostin V.M., Belyaev G.G., Ovcharenko O.Ya., Trushkina E.P. Disturbances of the topside ionosphere caused by typhoons. Geomagnetism and Aeronomy. 2010, vol. 50, iss. 2, pp. 243-255. DOI:https://doi.org/10.1134/S001679321002012X.
18. Kshevetsky S.P., Gavrilov N.M. Vertical propagation and breaking of nonlinear gravity waves in the atmosphere. Geomagnetism and Aeronomy. 2003, vol. 43, no. 1, p. 69.
19. Li W., Yue J., Wu S., Yang Y., Li Z., Bi J., Zhang K. Ionospheric responses to typhoons in Australia during 2005-2014 using GNSS and FORMOSAT-3/COSMIC measurements. GPS Solutions. 2018, vol. 22, no. 3, pp. 1-22. DOI:https://doi.org/10.1007/s10291-018-0722-1.
20. Melioransky A.S. Vysypanie elektronov iz radiatsionnykh poyasov i koltsevogo toka pod vliyaniem izluchenii taifunov v severo-zapadnoi chasti Tikhogo okeana. Taifun “Maik” i moshchnyi tropicheskii shtorm “Nell” [Electron precipitation from radiation belts and ring current under the effect of typhoon emissions in the north-western part of the Pacific Ocean. Typhoon Mike and powerful tropical storm Nell]. Preprint of Space Research Institute. No.2136. Moscow, 2007, 18 p.
21. Olsen N., Friis-Christensen E., Floberghagen R., Alken P., Beggan C.D., Chulliat A., et al. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products. Earth, Planets and Space. 2013, vol. 65, pp. 1189-1200. DOI:https://doi.org/10.5047/eps.2013.07.001.
22. Pilipenko V., Belakhovsky V., Kozlovsky A., Fedorov E., Kauristie K. Determination of the wave mode contribution into the ULF pulsations from combined radar and magnetometer data: Method of apparent impedance. J. Atm. Solar-Terr. Phys. 2012, vol. 77, pp. 85-95. DOI:https://doi.org/10.1016/j.jastp.2011.11.013.
23. Pokhotelov O.A., Pilipenko V.A., Fedorov E.N., Stenflo L., Shukla P.K. Induced electromagnetic turbulence in the ionosphere and the magnetosphere. Physica Scripta. 1994, vol. 50, pp. 600-605.
24. Polyakova A.S., Perevalova N.P. Comparative analysis of TEC disturbances over tropical cyclone zones in the North-West Pacific Ocean. Adv. Space Res. 2013, vol. 52, pp. 1416-1426. DOI:https://doi.org/10.1016/j.asr.2013.07.029.
25. Rishbeth H. F-region links with the low atmosphere? J. Atmos. Solar-Terr. Phys. 2006, vol. 68, no. 3, pp. 469-478. DOI:https://doi.org/10.1016/j.jastp.2005.03.017.
26. Rozhnoi A., Solovieva M., Levin B., Hayakawa M., Fedun vol. Meteorological effects in the lower ionosphere as based on VLF/LF signal observations. Natural Hazards Earth System Sci. 2014, vol. 14, pp. 2671-2679.
27. Sorokin V.M., Isaev N.V., Yaschenko A.K., Chmyrev V.M., Hayakawa M. Strong DC electric field formation in the low latitude ionosphere over typhoons. J. Atm. Solar-Terr. Phys. 2005, vol. 67, pp. 1269-1279. DOI:https://doi.org/10.1016/j.jastp.2005.06.014.
28. Vanina-Dart L.B., Pokrovskaya I.V., Sharkov E.A. Studying the interaction between the lower equatorial ionosphere and tropical cyclones according to data of remote and rocket sounding. Izvestiya, Atmospheric and Oceanic Physics. 2007, no. 2, pp. 19-27.
29. Walker G.O. Longitudinal structure of the F-region equatorial anomaly - a review. J. Atmos. Terr. Phys. 1981, vol. 43, iss. 8, pp. 763-774. DOI:https://doi.org/10.1016/0021-9169(81)90052-0.
30. Xiao Z., Xiao S.G., Hao Y.Q., Zhang D.H. Morphological features of ionospheric response to typhoon. J. Geophys. Res. 2007, vol. 112, iss. A4, A04304. DOI:https://doi.org/10.1029/2006JA011671.
31. Zakharov V.I., Kunitsyn V.E. Regional features of atmospheric manifestations of tropical cyclones according to ground-based GPS network data. Geomagnetism and Aeronomy. 2012, vol. 52, no. 4, pp. 533-545. DOI:https://doi.org/10.1134/S0016793212040160.
32. Zakharov V.I., Zienko A.S., Kunitsyn V.E. GPS signal propagation under varied solar activity. Elekromagnitnye volny i elektronnye sistemy [J. Electromagnetic Waves and Electronic Systems]. 2008, vol. 13, no. 8, pp. 51-57. (In Russian).
33. URL: http://directory.eoportal.org/web/eoportal/satellitemissions/s/swarm (accessed March 1, 2019).
34. URL: http://weather.unisys.com/hurricane (accessed March 1, 2019).
35. URL: http://www.nhc.noaa.gov/aboutsshws.php (accessed March 1, 2019).
36. URL: http://directory. eoportal.org/web/eoportal/satellite-missions/s/swarm (accessed March 1, 2019).
37. URL: https://earth.esa.int/web/guest/ swarm/data-access (accessed March 1, 2019).