Германия
Россия
Россия
Россия
Россия
Россия
The forest genetics, tree improvement and protection can greatly benefit from complete genome sequence data made recently available for several major conifer species. They allow to identify and annotate genes, other functional elements (sRNA, transcription factors, regulatory elements, etc.) and genetic networks that control adaptation and dis-ease resistance. They can be used to develop highly informative genetic markers that can be used in population genetic studies to create database of barcodes for individual populations to fight illegal timber harvest and trade. They are very much needed for development of genome-wide genetic markers for association studies for linking genetic variation (SNPs, alleles, haplotypes, and genotypes) with environmental factors, adaptive traits and phenotypes for better understanding genetic control of agronomically and economically important traits. They can be also used to develop genome-wide genetic markers for genomic-assisted selection to breed for better adapted, stress resistant and climate change resilient trees with desirable quality ecological and economic traits. Finally, whole genome sequences allow to integrate proteomics, transcriptomics and metabolomics and provide reference genomes for resequencing. In this brief summary we would like to present one of many practical applications of genetics and genomics in forestry– development of highly polymorphic and informative molecular genetic markers for several very important boreal for-est species in Eurasia, Siberian larch (Larix sibirica Ledeb.), Siberian stone pine (Pinus sibirica Du Tour) and Scots pine (Pinus sylvestris L.), based on the whole genome data obtained in the “Genomics of the Key Boreal Forest Conifer Species and Their Major Phytopathogens in the Russian Federation” project funded by the Government of the Russian Federation (grant no. 14.Y26.31.0004).
genetic diversity, genome, Larix sibirica, microsatellite markers, NGS, Pinus sibirica, Pinus sylvestris, Siberian larch, Siberian stone pine, Scots pine, whole genome sequencing
1. Khasa D.P., Newton C.H., Rahman M.H., Jaquish B., Dancik B.P. Isolation, characterization, and inheritance of microsatellite loci in alpine larch and western larch. Genome, 2000. Vol. 43. № 3. P. 439-448.
2. Isoda K., Watanabe A. Isolation and characterization of microsatellite loci from Larix kaempferi. Mol. Ecol. Notes, 2006. Vol. 6. № 3. P. 664-666.
3. Chen C., Liewlaksaneeyanawin C., Funda T., Kenawy A., Newton C.H., El-Kassaby Y.A. Development and charac-terization of microsatellite loci in western larch (Larix occidentalis Nutt.). Mol. Ecol. Resour., 2009. Vol. 9. № 3. P. 843-845.
4. Oreshkova N.V., Belokon M.M. Assessment of the genetic variation of Siberian larch use microsatellite markers. Vestnik MSGL - Lesnoy Vestnik, 2012. Vol. 84. № 1. P. 118-122, in Russian (Орешкова Н.В., Белоконь М.М. Оценка генетической изменчивости лиственницы сибирской с использованием микросателлитных маркеров // Вестник МГУЛ - Лесной вестник. 2012. Т. 84. № 1. С. 118-122.)
5. Oreshkova N.V., Belokon M.M., Jamiyansuren S. Genetic Diversity, Population Structure, and Differentiation of Siberian Larch, Gmelin Larch, and Cajander Larch on SSR-Marker Data. Russian Journal of Genetics, 2013. Vol. 49. № 2. P. 178-186. (Орешкова Н.В., Белоконь М.М., Жамъянсурен С. Генетическое разнообразие, популя-ционная структура и дифференциация лиственниц сибирской, Гмелина и Каяндера по данным SSR-маркеров // Генетика. 2013. Т. 49, № 2. С. 204-213.)
6. Krutovsky K.V., Oreshkova N.V., Putintseva Yu.A., Ibe A.A., Deich K.O., Shilkina E.A. Preliminary results of de novo whole genome sequencing of the Siberian Larch (Larix sibirica Ledeb.) and the Siberian Stone Pine (Pinus sibirica Du Tour). Siberian Journal of Forest Science, 2014. Vol. 1. № 4. P. 79-83 (in Russian with abstract in English). (Крутовский К.В., Орешкова Н.В., Путинцева Ю.А., Ибе А.А., Дейч К.О., Шилкина Е.А. Предварительные результаты полногеномного de novo секвенирования лиственницы сибирской (Larix sibirica Ledeb.) и сосны кедровой сибирской (Pinus sibirica Du Tour.) // Сибирский лесной журнал. 2014. Т. 1. № 4. С. 79-83.)
7. Oreshkova N.V., Putintseva Yu.A., Kuzmin D.A., Sharov V.V., Biryukov V.V., Makolov S.V., Deich K.O., Ibe А.А., Shilkina Е.А., Krutovsky K.V. Genome sequencing and assembly of Siberian larch (Larix sibirica Ledeb.) and Siberian pine (Pinus sibirica Du Tour) and preliminary transcriptome data. Proceedings of the 4th International Conference on Conservation of Forest Genetic Resources in Siberia. Barnaul, Russia, 24-29 August, 2015, pp. 127-128.
8. Sadovsky M.G., Putintseva Yu.A., Birukov V.V., Novikova S., Krutovsky K.V. De novo assembly and cluster analy-sis of Siberian larch transcriptome and genome. Lecture Notes in Bioinformatics, 2016. Vol. 9656. P. 455-464.
9. Belokon M.M., Politov D.V., Mudrik E.A., Polyakova T.A., Shatokhina A.V., Belokon Yu.S., Oreshkova N.V., Putintseva Yu.A., Sharov V.V., Kuzmin D.A., Krutovsky K.V. Development of Microsatellite Genetic Markers in Siberian Stone Pine (Pinus sibirica Du Tour) Based on the De Novo Whole Genome Sequencing. Russian Journal of Genetics, 2016. Vol. 52. № 12. P. 1284-1292. (Белоконь М.М., Политов Д.В., Мудрик Е.А., Полякова Т.А., Шатохина А.В., Белоконь Ю.С., Орешкова Н.В., Путинцева Ю.А., Шаров В.В., Кузмин Д.А., Крутовский К.В. Разработка микросателлитных маркёров сосны кедровой сибирской (Pinus sibirica Du Tour) по результатам полногеномного de novo секвенирования // Генетика. 2016. Т. 52. № 12. C. 1418-1427.)
10. Oreshkova N.V., Putintseva Yu.A., Sharov V.V., Kuzmin D.A., Krutovsky K.V. Development of Microsatellite Genetic Markers in Siberian larch (Larix sibirica Ledeb.) Based on the De Novo Whole Genome Sequencing. Rus-sian Journal of Genetics, 2017. Vol. 53. № 11. P. 1194-1199. (Орешкова Н. В., Путинцева Ю. А., Шаров В. В., Кузмин Д. А., Крутовский К.В. Разработка микросателлитных маркёров лиственницы сибирской (Larix si-birica Ledeb.) на основе полногеномного de novo секвенирования // Генетика. 2017. Т. 53. № 11. C. 1278-1284.)
11. Liu Y., Schröder J., Schmidt B. Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics, 2013. Vol. 29. № 3. P. 308-315.
12. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014. Vol. 30. № 15. P. 2114-2120.
13. Wang X., Lu P., Luo Z. GMATo: A novel tool for the identification and analysis of microsatellites in large genomes. Bioinformation, 2013. Vol. 9. № 10. P. 541-544.
14. Martins W.S., Lucas D.C.S., Neves K.F.S., Bertioli D.J. WebSat - a web software for microsatellite marker devel-opment. Bioinformation, 2009. Vol. 3. № 6. P. 282-283.
15. Semerikov V.L., Putintseva Yu.A., Oreshkova N.V., Semerikova S.A., Krutovsky K.V. Development of new mito-chondrial DNA markers in Scots pine (Pinus sylvestris L.) for population and phylogeographic studies. Russian Journal of Genetics, 2015. Vol. 51. № 12. P. 1199-1203.
16. Semerikov V.L., Semerikova S.A., Putintseva Y.A., Tarakanov V.V., Tikhonova I.V., Vidyakin A.I., Oreshkova N.V., Krutovsky K.V. Colonization history of Scots pine in Eastern Europe and North Asia based on mitochondrial DNA variation. Tree Genetics and Genomes, 2018. Vol. 14:8.