Россия
Россия
Россия
ГРНТИ 27.01 Общие вопросы математики
ГРНТИ 31.01 Общие вопросы химии
ГРНТИ 34.01 Общие вопросы биологии
Nanomaterials based on carbon nanotubes (CNT) and graphenes attract a lot of attention of researchers as the materials capable to raise the development of various industries to the new level, and first of all, of the chemical and electronic sectors. In addition to known experimental methods, new nanosystems are widely studied using advanced tools of quantum-chemical approaches. Modern theoretical methods are of great interest due to their ability to interpret known experimental facts and predict properties of non-synthesized compounds yet. This paper reviews results of theoretical studies performed using the density functional theory (DFT) methods to obtain data on the structure and electronic properties of single-walled CNT and graphene, modified with various impurities, with covalent-ionic and non-covalent binding mechanisms. New computational methods are briefly described that are currently employed to treat the dispersion interaction and enhance possibilities of DFT tools in systems where the van der Waals forces play a significant role. Particular attention is paid to the characteristics of carbon nanomaterials containing technologically important hydroxyl, carboxyl and amino groups. It is shown that the specific peculiarity of band structures of discussed in the literature CNT functionalized by OH, COOH, NHn and CONH2 groups is the partially occupied band in the neighborhood of the Fermi level, which directly affects the CNT conductivity. Modification of graphene layers is analyzed that interact with hydrogen, fluorine, bases of nucleic acids and the metal substrate surface. We also provide accuracy estimates for the calculations of interatomic bond lengths, interaction energy and band gap carried out in the literature using a variety of DFT approximations.
carbon nanotubes, graphene, functionalization, density functional theory
1. Burke K. Perspective on density functional theory. J. Chem. Phys., 2012, vol. 136, pp. 150901-1-150901-9.
2. Scuseria G.E., Staroverov V.N. Progress in the development of exchange-correlation functionals. Chapter 24. Theory and applications of computational chemistry: the first 40 years (a volume of technical and historical perspectives). Amsterdam: Elsevier, 2005, pp. 669-724.
3. Klimeš J., Michaelides A. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys., 2012, vol. 137, pp. 120901-1-120901-12.
4. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, vol. 27, pp. 1787-1799.
5. Tkatchenko A., Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett., 2009, vol. 102, pp. 073005-1-073005-4.
6. Dion M., Rydberg H., Schröder E., Langreth D.C., Lundqvist B.I. van der Waals density functional for general geometries. Phys. Rev. Lett., 2004, vol. 92, pp. 246401-1-246401-4.
7. Lee K., Murray E.D., Kong L., Lundqvist B.I., Langreth D.C. Higher-accuracy van der Waals density functional. Phys. Rev. B,
8. 2010, vol. 82, pp. 081101-1-081101-4.
9. Cooper V.R. Van der Waals density functional: an appropriate exchange functional. Phys. Rev. B, 2010, vol. 81, pp. 161104-1- 161104-4.
10. Hamada I. van der Waals density functional made accurate. Phys. Rev. B, 2014, vol. 89, pp. 121103-1-121103-4.
11. Sarkisov S.Y., Kosobutsky A.V., Shandakov S.D. Effect of van der Waals interactions on the structural and binding properties of GaSe. J. Sol. State Chem., 2015, vol. 232, pp. 67-72.
12. Brudnyi V.N., Sarkisov S.Yu., Kosobutsky A.V. Electronic properties of GaSe, InSe, GaS and GaTe layered semiconductors: charge neutrality level and interface barrier heights. Semicond. Sci. Technol., 2015, vol. 30, no. 11, pp. 115019-1-115019-9.
13. Akdim B., Kar T., Duan X., Pachter R. Functionalization of single-wall carbon nanotubes: an assessment of computational methods. Proceedings of 4th International Conference “Computational Science - ICCS 2004”. Krakow, Poland, 2004, pp. 260-267.
14. Ramanathan T., Fischer F.T., Ruo R.S., Brinson L.C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater., 2005, vol. 17, pp. 1290-1295.
15. Pan H., Feng P., Lin J.Y. Ab initio study of OH-functionalized single-wall carbon nanotubes. Phys. Rev. B, 2004, vol. 70, pp. 245425-1-245425-5.
16. Chelmecka E., Pasterny K., Kupka T., Stobinski L. DFT studies of OH-functionalized open-ended zigzag, armchair, and chiral single wall carbon nanotubes. Phys. Status Solidi A, 2011, vol. 208, no. 8, pp. 1774-1777.
17. Veloso M.V., Souza Filho A.G., Mendes Filho J., Fagan S.B., Mota R. Ab initio study of covalently functionalized carbon nanotubes. Chem. Phys. Lett., 2006, vol. 430, pp. 71-74.
18. Doudou B.B., Chen J., Vivet A., Poîlane C., Ayachi M. Size-dependent properties of amino-functionalized single walled carbon nanotubes. Comput. Theor. Chem., 2011, vol. 967, pp. 231-234.
19. Wang C., Zhou G., Liu H., Wu J., Qiu Y., Gu B.-L., Duan W. Chemical functionalization of carbon nanotubes by carboxyl groups on Stone-Wales defects: a density functional theory study. J. Phys. Chem. B, 2006, vol. 110, pp. 10266-10271.
20. Doudou B.B., Chen J., Vivet A., Poîlane C., Ayachi M. Role of Stone-Wales defects on the functionalization of (8, 0) single wall carbon nanotubes by the amine group: ab initio study. Physica E, 2011, vol. 44, pp. 120-123.
21. Xu Y.-J., Li J.-Q. The interaction of N2 with active sites of a single-wall carbon nanotube. Chem. Phys. Lett., 2005, vol. 412, no. 4-6, pp. 439-443.
22. Basiuk V.A. ONIOM studies of chemical reactions on carbon nanotube tips: effects of the lower theoretical level and mutual orientation of the reactants. J. Phys. Chem. B, 2003, vol. 107, no. 34, pp. 8890-8897.
23. Sofo J.O., Chaudhari A.S., Barber G.D. Graphane: a two-dimensional hydrocarbon. Phys. Rev. B, 2007, vol. 75, pp. 153401-1-153401-4.
24. Ellias D.C., Nair R.R., Mohiuddin T.G.M., Morozov S.V., Blake P., Halsall M.P., Ferrari A.C., Boukhvalov D.W., Katsnelson M.I., Geim A.K., Novoselov K.S. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science, 2009, vol. 323, no. 5914, pp. 610-613.
25. Pedersen T.G., Flindt C., Pedersen J., Mortensen N.A., Jauho A.pp. Graphene antidot lattices: designed defects and spin qubits.
26. Phys. Rev. Lett., 2008, vol. 100, pp. 136804-1-136804-4.
27. Appelhans D.J., Carr L.D., Lusk M.T. Embedded ribbons of graphene allotropes: an extended defect perspective. New J. Phys., 2010, vol. 12, pp. 125006-1-125006-21.
28. Peng X., Ahuja R. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett., 2008, vol. 8, no. 12, pp. 4464-4468.
29. Lahiri J., Lin Y., Bozkurt P., Oleynik I.I., Batzill M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol., 2010, vol. 5, pp. 326-329.
30. Banhart F., Kotakoski J., Krasheninnikov A.V. Structural defects in graphene. ACSnano, 2011, vol. 5, no. 1, pp. 26-41.
31. Lu Y.H., Feng Y.P. Band-gap engineering with hybrid graphane-graphene nanoribbons. J. Phys. Chem. C, 2009, vol. 113, pp. 20841-20844.
32. Boukhvalov D.W., Katsnelson M.I., Lichtenstein A.I. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B, 2008, vol. 77, pp. 035427-1-035427-7.
33. Boukhvalov D. W. Repair of magnetism in oxidized graphene nanoribbons. Chem. Phys. Lett., 2011, vol. 501, pp. 396-399.
34. Milowska K., Birowska M., Majewski J.A. Structural and electronic properties of functionalized graphene. Acta Phys. Pol. A, 2011, vol. 120, no. 5, pp. 842-844.
35. Chang K., Berber S., Tomanek D. Transforming carbon nanotubes by silylation: an ab initio study. Phys. Rev. Lett., 2008, vol. 100, pp. 236102-1-236102-4.
36. Curran S.A., Cech J., Zhang D., Dewald J.L., Avadhanula A., Kandadai M., Roth S.J. Thiolation of carbon nanotubes and sidewall functionalization. Mater. Res., 2006, vol. 21, pp. 1012-1018.
37. Nakamura T., Ohana T., Ishihara M., Hasegawa M., Koga Y. Chemical modification of single-walled carbon nanotubes with sulfur-containing functionalities. Diamond Relat. Mater., 2007, vol. 16, pp. 1091-1094.
38. Denis A.P. Theoretical Investigation of the stability, electronic and magnetic properties of thiolated single-wall carbon nanotubes. Int. J. Quantum Chem., 2009, vol. 109, pp. 772-781.
39. Cho E., Shin S., Yoon Y.-G. First-principles studies on carbon nanotubes functionalized with azomethine ylides. J. Phys. Chem. C, 2008, vol. 112, pp. 11667-11672.
40. Miller G.P., Kintigh J., Kim E., Weck P.F., Berber S., Tomanek D. Hydrogenation of single-wall carbon nanotubes using polyamine reagents: combined experimental and theoretical study. J. Am. Chem. Soc., 2008, vol. 130, no. 7, pp. 2296-2303.
41. Lim S.H., Li R., Ji W., Lin J. Effects of nitrogenation on single-walled carbon nanotubes within density functional theory.
42. Phys. Rev. B, 2007, vol. 76, pp. 195406-1-195406-16.
43. Wang W.L., Bai X.D., Liu K.H., Xu Z., Golberg D., Bando Y., Wang E.G. Direct synthesis of B-C-N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition. J. Am. Chem. Soc., 2006, vol. 128, pp. 6530-6531.
44. Chen L.-N., Ma S.-S., OuYang F.-P., Xiao J., Xu H. First-principles study of metallic carbon nanotubes with boron/nitrogen co-doping. Chin. Phys. B, 2011, vol. 20, no. 1, pp. 017103-1-017103-7.
45. Xu Z., Lu W., Wang W., Gu C., Liu K., Bai X., Wang E., Dai H. Converting metallic single-walled carbon nanotubes into semiconductors by boron/nitrogen co-doping. Adv. Mater, 2008, vol. 20, pp. 3615-3619.
46. Park K.A., Choi Y.S., Lee Y.H., Kim C. Atomic and electronic structures of fluorinated single-walled carbon nanotubes. Phys. Rev. B, 2003, vol. 68, pp. 045429-1-045429-8.
47. Margulis Vl.A., Muryumin E.E. Chemisorption of single fluorine atoms on the surface of zigzag single-walled carbon nanotubes: a model calculation. Physica B, 2007, vol. 390, pp. 134-142.
48. Brzhezinskaya M.M., Muradyan V.E., Vinogradov N.A., Preobrajenski A.B., Gudat W., Vinogradov A.S. Electronic structure of fluorinated multiwalled carbon nanotubes studied using x-ray absorption and photoelectron spectroscopy. Phys. Rev. B, 2009, vol. 79, pp. 155439-1-155439-12.
49. Robinson J.T., Burgess J.S., Junkermeier C.E., Badescu S.C., Reinecke T.L., Perkins F.K., Zalalutdniov M.K., Baldwin J.W., Culbertson J.C., Sheehan P.E. Properties of fluorinated graphene films. Nano Lett., 2010, vol. 10, pp. 3001-3005.
50. Karlicky F., Otyepka M. Band gaps and optical spectra of chlorographene, fluorographene and graphane from G0W0, GW0 and GW calculations on top of PBE. J. Chem. Theory Comput., 2013, vol. 9, pp. 4155-4164.
51. Zhou J., Wu M.M., Zhou X., Sun Q. Tuning electronic and magnetic properties of graphene by surface modification. Appl. Phys. Lett., 2009, vol. 95, pp. 103108-1-103108-3.
52. Zanolli Z., Charlier J.-C. Defective carbon nanotubes for single-molecule sensing. Phys. Rev. B, 2009, vol. 80, pp. 155447-1-155447-6.
53. Cicero G., Grossmann J.C., Galli G. Adhesion of single functional groups to individual carbon nanotubes: electronic effects probed by ab initio calculations. Phys. Rev. B, 2006, vol. 74, pp. 035425-1-035425-5.
54. Lim S., Park N. Ab initio study of noncovalent sidewall functionalization of carbon nanotubes. Appl. Phys. Lett., 2009, vol. 95, pp. 243110-1-243110-4.
55. Orellana W. Single- and double-wall carbon nanotubes fully covered with tetraphenylporphyrins: stability and optoelectronic properties from ab initio calculations. Chem. Phys. Lett., 2015, vol. 634, pp. 47-52.
56. Choi J.I., Jang S.S. Structural and electronic properties of sulfuric acid-doped single-walled carbon nanotubes. J. Comput. Theor. Nanosci., 2010, vol. 7, pp. 232-236.
57. Hamada I., Otani M. Comparative van der Waals density-functional study of graphene on metal surfaces. Phys. Rev. B, 2010, vol. 82, pp. 153412-1-153412-4.
58. Loncaric I., Despoja V. Benchmarking van der Waals functionals with noncontact RPA calculations on graphene-Ag(111).
59. Phys. Rev. B, 2014, vol. 90, pp. 075414-1-075414-6.
60. Grüneis A., Vyalikh D.V. Tunable hybridization between electronic states of graphene and a metal surface. Phys. Rev. B, 2008, vol. 77, pp. 193401-1-193401-4.
61. Le D., Kara A., Schroder E., Hyldgaard P., Rahman T.S. Physisorption of nucleobases on graphene: a comparative van der Waals study. J. Phys.: Condens. Matter., 2012, vol. 24, pp. 424210-1-424210-7.
62. Lee J.-H., Choi Y.-K., Kim H.-J., Scheicher R.H., Cho J.-H. Physisorption of DNA nucleobases on h-BN and graphene: vdW- corrected DFT calculations. J. Phys. Chem. C, 2013, vol. 117, no. 26, pp. 13435-13441.
63. Lee Y.-S., Nardelli M.B., Marzari N. Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nanotubes. Phys. Rev. Lett., 2005, vol. 95, pp. 076804-1-076804-4.
64. Furst J.A., Hashemi J., Markussen T., Brandbyge M., Jauho A.P., Nieminen R.M. Electronic transport properties of fullerene functionalized carbon nanotubes: ab initio and tight-binding calculations. Phys. Rev. B, 2009, vol. 80, pp. 035427-1-035427-4.
65. Khoo K.H., Chelikowsky J.R. Electron transport across carbon nanotube junctions decorated with Au nanoparticles: density functional calculations. Phys. Rev. B, 2009, vol. 79, pp. 205422-1-205422-6.
66. Berahman M., Sheikhi M.H. Transport properties of zigzag graphene nanoribbon decorated with copper clusters. J. Appl. Phys., 2014, vol. 116, pp. 093701-1-093701-8.
67. Rocha A.R., Rossi M., da Silva A.J.R., Fazzio A. Realistic calculations of carbon-based disordered systems. J. Phys. D: Appl. Phys., 2010, vol. 43, pp. 374002-1-374002-12.
68. Mowbray D.J., Morgan C., Thygesen K.S. Influence of O2 and N2 on the conductivity of carbon nanotube networks. Phys. Rev. B, 2009, vol. 79, pp. 195431-1-195431-6.
69. Furst G.A., Brandbyge M., Jauho A.-P., Stokbro K. Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms. Phys. Rev. B, 2008, vol. 78, pp. 195405-1-195405-7.
70. Zanolli Z, Charlier J.-C. Spin transport in carbon nanotubes with magnetic vacancy-defects. Phys. Rev. B, 2010, vol. 81, pp. 165406-1-165406-6.