DIAGNOSTICS OF HF RADIO CHANNEL: BASED ON DATA FROM BACKSCATTER IONOSPHERIC SOUNDING BY CONTINUOUS CHIRP SIGNAL
Аннотация и ключевые слова
Аннотация (русский):
Backscatter ionospheric sounding (BIS) is a powerful tool for monitoring and predicting conditions of operation of HF communication systems. The BIS method is adopted to determine coverage areas of radio waves and maximum usable radio frequencies, distance along the ground to a scatterer, as well as to gain information about ionospheric structure and conditions. To solve these problems, we propose a method for direct diagnostics of HF radio channel at the leading edge of BIS signals on ionograms. The method relies on real-time automatic processing and interpretation of BIS ionograms. We present algorithms for determining the maximum usable frequencies and characteristics of oblique sounding signals from current BIS data, without correcting ionospheric parameters. We realize the algorithm for recovering ionospheric parameters at the path midpoint.

Ключевые слова:
ionosphere, ionogram, radio wave propa-gation, backscatter ionospheric sounding
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Benito E., Bourdillon A., Saillant S., Rannou V., Molinié J.P. Inversion of HF backscatter ionograms using elevation scans. J. Atmos. Terr. Phys. 2008, vol. 70, no. 15, pp. 1935-1948. DOI:https://doi.org/10.1016/j.jastp.2008.09.031.

2. Benner A.H. Predicting maximum usable frequency from long-distance scatter. Proceedings of IRE. 1949, vol. 37, no. 1, pp. 44-47.

3. Bilitza D., Reinisch B.W. International Reference Ionosphere 2007: Improvements and new parameters. Adv. Space Res. 2008, vol. 42, pp. 599-609. DOI:https://doi.org/10.1016/j.asr.2007.07.048.

4. Brynko I.G., Galkin I.A., Grozov V.P., Dvinskikh N.I., Matyushonok S.M., Nosov V.E. An automatically controlled data gathering and processing system using an FMCW ionosonde. Adv. Space Res. 1988, vol. 8, no. 4, pp. 121-124.

5. Chernov Yu.А. Vozvratno-naklonnoe zondirovanie ionosfery [Backscatter Sounding Ionosphere]. Moscow, Sov. svyaz’ Publ., 1971, 204 p. (In Russian).

6. Dyson P.L. A simple method of backscatter ionogram analysis. J. Atmos. Terr. Phys. 1991, vol. 53, no. 1, pp. 75-88.

7. Fridman S.V., Nickisch L.J., Hausman M. Inversion of backscatter ionograms and TEC data for over-the-horizon radar. Radio Sci. 2012, vol. 47, RS0L10. DOI:https://doi.org/10.1029/2011RS004932.

8. Grozov V.P., Ilyin N.V., Kotovich G.V., Ponomarchuk S.N. Software system for automatic interpretation of ionosphere sounding data. Pattern Recognition and Image Analysis. 2012, vol. 22, no. 3, pp. 458-463. DOI:https://doi.org/10.1134/S1054661812030042.

9. Grozov V.P., Kiselev A.M., Kotovich G.V., Mikhailov S.Ya., Ponomarchuk S.N. The software for processing and interpretation of sounding ionogram on base of digital chirp sounder. Geliogeofizicheskie issledovaniya [Heliogeophysical Research]. 2013, vol. 4, pp. 75-85. (In Russian).

10. Ilyin N.V., Khakhinov V.V., Kurkin V.I., Nosov V.V., Orlov I.I., Ponomarchuk S.N. The theory of chirp-signal ionospheric sounding. Proceedings of ISAP’96. Chiba, Japan, 1996, pp. 689-692.

11. Ivanova V.A., Kurkin V.I., Polekh N.M., Chistyakova L.V., Brynko I.G., Chuyev V.V., Dumbrava Z.F., Poddelskii I.N. Studying large-scale traveling ionospheric disturbances according to the data of oblique-incidence sounding. Geomagnetism and Aeronomy. 2011, vol. 51, no. 8, рр. 1101-1104.

12. Feng J., Ni B.-B., Zhao Z.-Y., Liu W., Wei N., Lou P. A method of reconstructing horizontally-inhomogeneous ionospheric structure using HF sky-wave backscatter ionograms. Chinese J. Geophys. 2016, vol. 59, no. 5, pp. 457-473.

13. Kabanov N.I., Osetrov B.I. Vozvratno-naklonnoe zondirovanie ionosfery [Backscatter Sounding Ionosphere]. Moscow, Svyaz’ Publ., 1965, 112 p.

14. Kotovich G.V., Kim A.G., Mikhailov S.Ya., Grozov V.P., Mikhailov Ya.S. Determining the foF2 critical frequency at the path midpoint from oblique sounding data based on the Smith method. Geomagnetism and Aeronomy. 2006, vol. 46, no. 4, pp. 517-521. DOI:https://doi.org/10.1134/S0016793206040141.

15. Krasheninnikov I.V., Liannoy B.E. Estimation of the true ionospheric height profile, with a continuous gradient, from oblique sounding data. J. Atmos. Terr. Phys. 1990, vol. 52, no. 2, pp. 113-117.

16. Kurkin V.I., Laryunin O.A., Podlesny A.V., Pezhems-kaya M.D., Chistyakova L.V. Studying morphological characteristics of traveling ionospheric disturbances with the use of near-vertical ionospheric sounding data. Atmospheric and Oceanic Optics. 2014, vol. 27, iss. 4. pp. 303-309. DOI: 10.1134/ S1024856014040095.

17. Kurkin V.I., Nosov V.E., Ponomarchuk S.N., Savkov S.S., Chistyakova L.V. Method for operative diagnostics of HF radio channel. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. Novosibirsk, Nauka Publ., 1993, vol. 100, pp. 168-188. (In Russian).

18. Li N., Zhao Z., Zhou C., Chen G., Yang G., Huang S., Li T. Inversion of sweep frequency backscatter ionogram from monostatic HF sky-wave radar. IEEE Geoscience and Remote Sensing Letters. 2013, vol. 10, no. 6, рр. 1360-1364. DOI:https://doi.org/10.1109/LGRS.2013.2241728.

19. Mikhailov S.Ya. Ambiguity of the reconstruction of plasma frequency profiles from a given height-frequency characteristic and their discernibility for oblique propagation of HF radio waves in an isotropic ionosphere. Radiophysics and Quantum Electronics. 2000, vol. 43, no. 10, pp. 766-782.

20. Norman R.J., Dyson P.L. HF radar backscatter inversion technique. Radio Sci. 2006, vol. 41, RS4010. DOI: 10.1029/ 2005S003355.

21. Oinats A.V., Nishitani N., Ponomarenko P., Ratovsky K.G. Diurnal and seasonal behavior of the Hokkaido East SuperDARN ground backscatter: simulation and observation. Earth, Planets and Space. 2016, vol. 68, no. 1, рр. 18. DOI: 10.1186/ s40623-015-0378-9.

22. Podlesnyi A.V., Brynko I.G., Kurkin V.I., Berezovsky V.A., Kiselev A.M., Petukhov E.V. Multifunctional chirp ionosonde for monitoring the ionosphere. Geliogeofizicheskie issledovaniya [Heliogeophysical Research]. 2013, no. 4, pp. 24-31. (In Russian).

23. Ponomarchuk S.N, Kurkin V.I., Oinats A.V. The Diagnostics of ionosphere and Earth ground surface by backscatter sounding data. PIERS 2009: Proceedings. Moscow, 2009, vol. I, II, pp. 1307-1310.

24. Ponomarchuk S.N., Grozov V.P., Kotovich G.V., Penzin M.S. The real-time forecast of HF radio channel on the base of ionosphere sounding data. PIERS 2012: Proceedings. Moscow, 2012, pp. 1182-1186.

25. Ponomarchuk S.N., Grozov V.P., Kim A.G., Kotovich G.V., Podlesniy A.V. The near real-time diagnostics of ionosphere parameters at the middle point of the radio path on the base of oblique sounding data. Proceedings of SPIE. 2015, vol. 9680, 96805E. DOI:https://doi.org/10.1117/12.2203589.

26. Ponomarchuk S.N., Grozov V.P., Kotovich G.V., Kurkin V.I., Penzin M.S. Automatic processing and interpretation of backscatter ionosphere sounding ionograms. Proceedings of SPIE. 2016, vol. 10035, 100351E. DOI:https://doi.org/10.1117/12.2248765.

27. Ponomarchuk S.N., Ilyin N.V., Penzin M.S. Тhe model of radio wave propagation in 1-10 МHz frequency range on the base of normal wave technique. Solnechno-zemnaуa fizika [Solar-Terr. Phys.]. 2014, iss. 25, pp. 33-39. (In Russian).

28. Smith M.S. The calculation of ionospheric profiles from data given on oblique incidence ionograms. J. Atmos. Terr. Phys. 1970, vol. 32, no. 6, pp. 1047-1056.

29. Zhu P., Zhou C., Zhang Yu., Yang G., Jiang C., Sun H., Cui X. F region electron density profile inversion from backscatter ionogram based on international reference ionosphere. J. Atmos. Solar-Terr. Phys. 2015, vol. 129, pp. 111-118. DOI:https://doi.org/10.1016/j.jastp.2015.05.003.

Войти или Создать
* Забыли пароль?