Пушкино, г. Москва и Московская область, Россия
Важнейшим управленческим аспектом при организации системы охраны лесов от пожаров является своевременное получение достоверных сведений о площади, пройденной огнем. В настоящее время для кон-троля за точностью соответствующих сведений создана многоуровневая система специальных мероприятий, включая выездные проверки площадей горельников. Вместе с тем, большие объемы информации из разных источников, накопленные в лесопожарных базах данных, позволяют проводить статистическую оценку досто-верности (или точности) сведений, значительно сокращая временные и финансовые затраты на выполнение проверочных мероприятий. Математически доказано, что множество чисел, характеризующих реальные при-родные объекты, которые могут расти экспоненциально, подчиняются закону Бенфорда. В работе доказана применимость положений закона Бенфорда к оценке достоверности сведений о площадях лесных пожаров на примере анализа встречаемости первых цифр в числах, характеризующих пройденную огнем покрытую лесом площадь на территории Российской Федерации в 2016 году, а также проведена оценка минимального количества значений, необходимых для получения адекватного результата. Кроме того, в работе показана возможность проведения сравнительной оценки достоверности сведений, полученных из разных источников. Учитывая, что отклонения частоты появления отдельных цифр в анализируемых совокупностях значений могут иметь разный знак для разных цифр, для сравнительных оценок предлагается использовать показатель, представляющий среднее значение модулей отклонений вероятности появления соответствующей цифры. Предложенный метод основанан на использовании закона Бенфорда и может стать одним из элементов риск-ориентированного подхода для планирования контрольно-надзорных мероприятий в области лесных отношений
лесные пожары, статистический анализ, информационные технологии, риск-ориентированный подход.
1. Алексеев, М.А. Применимость закона Бенфорда для определения достоверности финансовой отчетно-сти [Текст] / Алексеев М.А.// Вестник НГУЭУ. - 2016. - № 4
2. Воробьев, А. Аномальные цифры финансовых махинаций [Электронный ресурс]. //Бухгалтерия.ру. - Режим доступа: http://www.buhgalteria.ru/article/n28684
3. Кечкова, И.В. Закон Бенфорда как метод выявления мошеннических действий [Текст] / И.В. Кечкова // Молодой ученый. - 2017.- № 11. - Ч.2. - С. 219-221.
4. Котельников, Р.В. Технология идентификации спутниковых данных о лесных пожарах с данными на-земного и авиационного мониторинга с использованием ИСДМ-Рослесхоз [Текст] / Р.В.Котельников, Е.В.Флитман Е.В. // Современные проблемы дистанционного зондирования Земли из космоса. - 2007. - Т. I.- № 4. - С. 162-166.
5. Кувакина, Л.В. Закон Бенфорда: сущность и применение [Текст] / Л.В. Кувакина, А.Ф. Долгополова // Современные проблемы науки и образования. - 2013. - № 6. - С. 74-76.
6. Лупян, Е.А. Организация работы со спутниковыми данными в информационной системе дистанцион-ного мониторинга лесных пожаров Федерального агентства лесного хозяйства (ИСДМ-Рослесхоз) [Текст] / Е.А. Лупян С.А. Барталев, Д.В. Ершов, Р.В. Котельников, И.В. Балашов, М.А. Бурцев, В.А. Егоров, В.Ю. Ефремов, В.О. Жарко, К.А. Ковганко, П.А. Колбудаев, Ю.С. Крашенинникова, А.А. Прошин, А.А. Мазуров, И.А. Уваров, Ф.В. Стыценко, И.Г. Сычугов, Е.В. и др. // Современные проблемы дистанционного зондирования Земли из космоса. - 2015. - Т. 12. - № 5. - С. 222-250.
7. Badal-Valero, Elena; Alvarez-Jareno, Jose A.; Pavia, Jose M. Combining Benford's Law and machine learning to detect money laundering. An actual Spanish court case. FORENSIC SCIENCE INTERNATIONAL Vol: 282 pp. 24 - 34.
8. Hullemann, S.; Schupfer, G.; Mauch, J. Application of Benford's law: a valuable tool for detecting scientific papers with fabricated data? A case study using proven falsified articles against a comparison group. ANAESTHESIST. Vol. 66, no 10, pp. 795-802.
9. Kruger, P. S.; Yadavalli, V. S. S. The power of one: Benford's law. SOUTH AFRICAN JOURNAL OF IN-DUSTRIAL ENGINEERING. Vol. 28, no 2, pp. 1-13.
10. Shiu, Peter. Benford's law: Theory and application. Mathematical Gazette. Vol. 100, no 549, pp. 564-567.