MODELING THE ELECTRON TEMPERATURE DISTRIBUTION IN F2 REGION OF HIGH-LATITUDE IONOSPHERE FOR WINTER SOLSTICE CONDITIONS
Аннотация и ключевые слова
Аннотация (русский):
Using the three-dimensional model of the high-latitude ionosphere in Euler variables, which takes into account the mismatch between geographic and geomagnetic poles, we study the behavior of the electron temperature Te in the F2 region as a function of universal time. We present results of the numerical modeling of spatial-temporal distribution of electron temperature in the F2 region for winter solstice, minimum solar activity, and moderate geomagnetic activity. The electron temperature distribution in the F2 region of the high-latitude ionosphere in winter is shown to be characterized by a Te increase in dawn and dusk sectors. Further, the mismatch between the poles leads to regular longitudinal features in Te distribution during Earth’s daily rotation. Thus, at 05 UT, when the Eastern Hemisphere is illuminated, the elevated Te zone is formed only in the dawn sector, and at 17 UT, when the Western Hemisphere is illuminated such zones are observed in both the sectors. We discuss reasons for the formation of the regions with elevated electron temperature depending on the universal time. Results of numerical experiments are compared with similar results obtained with other models.

Ключевые слова:
High-latitude ionosphere, F2 region, Three-dimensional model, Rate of heating and cooling of electrons and ions, Electron and ion temperatures, Elevated electron temperature regions, Longitudinal features
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Banks P.N., Kockarts G. Aeronomy. Part A, B. New York: Academic Press, 1973. 785 p.

2. Bilitza D. Altadill D., Zhang Y., C. Mertens, V. Truhlik, P. Richards, L.-A. McKinnell, B. Reinisch. The International Reference Ionosphere 2012 - a model of international collaboration. J. Space Weather Space Clim., 2014, vol. A07, pp. 1. DOI: 10.1051 / swsc / 2014004.

3. Chapman S. The absorption and dissociative of ionizing effect of monochromatic radiation in an atmosphere on a rotation Earth. Proc. Phys. Soc. 1931, vol. 43, no. 5, pp. 483-501. DOI:https://doi.org/10.1088/0959-5309/43/5/302.

4. David M., Schunk R.W., Sojka J.J. The effect of downward electron heat flow and electron cooling processes in the high-latitude ionosphere. J. Atm. Solar-Terr. Phys. 2011, vol. 73, no. 16, pp. 2399-2409. DOI: 10.1016 / j.jastp.2011.

5. Fang X., Randall C., Lummerzheim D., S.C. Solomon, M.J. Mills, D.R. Marsh, C.H. Jackman, Wenbin Wang, Gang Lu. Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons. J. Geophys. Res. 2008, vol. 113, pp. A09311. DOI: 10.1029 / 2008JA013384.

6. Golikov I.A., Gololobov A.Yu., Popov V.I. Numerical modeling of thermal conditions of the high-latitude ionosphere. Vestnik Severo-Vostochnogo federal´nogo universiteta [Bull. of the North-Eastern Federal University]. 2012, vol. 9, no. 3, pp. 22-28. (In Russian).

7. Gololobov A.Yu., Golikov I.A., Popov V.I. Modeling the high-latitude ionosphere adjusted for mis-match between geographic and geomagnetic poles Vestnik Severo-Vostochnogo federal´nogo universi-teta [Bull. of the North-Eastern Federal University]. 2014, vol. 11, no. 2, pp. 46-54. (In Russian).

8. Heppner J.P. Empirical model of high electric field. J. Geophys. Res. 1977, vol. 82, no. 7, pp. 1115-1125. DOI: 10.1029 / JA082i007p01115.

9. Klimenko V.V., Koren´kov Yu.N., Namgaladze A.A., Karpov I.V., Surotkin V.A., Naumova N.M. Numerical modeling of “hot spots” in Earth’s magnetosphere. Geomagnetizm i aeronomiya [Geo-magnetism and Aeronomy]. 1991, vol. 31, no. 3, pp. 554-557. (In Russian).

10. Koffman W., Wickwar V.B. Very high electron temperature in the daytime F region at Sondrestrom. Geophys. Res. Lett. 1984, vol. 1, no. 9, pp. 912-922. DOI: 10.1029 / GL011i009p00919.

11. Kolesnik A.G., Golikov I.A. Mechanism of formation of the main ionospheric trough in F region. Ge-omagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1983, vol. 23, no. 4, pp. 909-914. (In Russian).

12. Kolesnik A.G., Golikov I.A., Chernyshev V.I. Mathematical Models of the Ionosphere. Tomsk: Rasko Publ., 1993. 240 p. (In Russian).

13. Krinberg I.A., Tashhilin A.V. Ionosphere and Plasmasphere. Moscow: Nauka Publ., 1984. 189 p. (In Russian).

14. Mingalev G.I., Mingaleva V.S. Effect of electron temperature increase in the main ionospheric trough due to internal processes in different seasons Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1992, vol. 31, no. 2, pp. 83-87.

15. Mingalev G.I., Mingaleva V.S. Simulation of the spatial structure of the high-latitude F-region for different conditions of solar illumination of the ionosphere. Proc. XXV Annual Seminar “Physics of Auroral Phenomena”. Apatity, 2002, pp. 107-110.

16. Perkins F.W., Roble R.G. Ionospheric heating by radio waves: prediction for Arecibo and the satellite power station. J. Geophys. Res. 1978, vol. 83, no. 4, pp. 1611-1624.

17. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues. J. Geophys. Res. 2002, vol. 107, no. A12, pp. 1501-1516.

18. Samarsky A.A. The theory of difference schemes. Moscow: Nauka Publ., 1977. 656 p. (In Russian).

19. Schunk R.W., Nagy A.F. Electron temperature in the F-regions of the ionosphere: theory and observations. Rev. Geophys. Space Phys. 1978, vol. 16, no. 3, pp. 355-399.

20. Schunk R.W., Sojka J.J., Bowline M.D. Theoretical study of the electron temperature in the high-latitude ionosphere for solar maximum and winter conditions. J. Geophys. Res. 1986, vol. 91, no. A11, pp. 12041-12054.

21. Stubbe P. Simultaneous solution of the time dependent coupled continuity equations, heat conduction equations, and equations of motion for a system consisting of a neutral gas, an electron gas, and a four component ion gas. J. Atmos. Terr. Phys. 1970, vol. 32, no. 9, pp. 865-903.

22. Truhlik V., Bilitza D., Triskova L. A new global empirical model of the electron temperature with the inclusion of the solar activity variations for IRI. Earth, Planets and Space. 2012, vol. 64, pp. 531-543.

23. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral precipitation model and its applications to ionospheric and magnetospheric studies. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 157-171.

24. Xiong C., Luhr H., Ma S.Y. The subauroral electron density trough: Comparison between satellite observations and IRI-2007 model estimates. Adv. Space Res. 2013, vol. 51, pp. 536-544.

Войти или Создать
* Забыли пароль?