ФОРМИРОВАНИЕ ВЕКОВОГО РЯДА ДАННЫХ ПО СОЛНЕЧНОЙ ХРОМОСФЕРЕ ДЛЯ ИССЛЕДОВАНИЙ, СВЯЗАННЫХ С СОЛНЕЧНОЙ АКТИВНОСТЬЮ
Аннотация и ключевые слова
Аннотация (русский):
В статье представлен наш действующий проект «Формирование векового ряда данных по солнечной хромосфере для исследований, связанных с солнечной активностью». Солнечная активность является главным фактором космической погоды, влияющим на жизнь человечества. Некоторые серьезные последствия воздействия космической погоды, например, нарушение космической связи и навигации, угроза безопасности астронавтов и спутников, повреждение электрических систем. Поэтому исследование солнечной активности имеет и научный, и социальный аспекты. Основная база данных формируется из оцифрованных и нормированных данных, полученных в нескольких обсерваториях по всему земному шару, и покрывает более чем 100-летний временной интервал. После тщательной калибровки мы сможем извлечь и получить данные и вместе с полной базой данных предоставить их астрономическому сообществу. Нашей конечной целью является привлечение внимания к нескольким физическим проблемам: поведение волокон в солнечном цикле, аномальный ход 24 цикла, крупномасштабные солнечные эрупции и дистанционно-индуцированные уярчения. Существенный прогресс ожидается в разработке алгоритмов получения данных и программного обеспечения, что поможет научному анализу и в итоге будет способствовать пониманию солнечных циклов.

Ключевые слова:
солнечный цикл, Hα, волокно, многопараметрическая калибровка, нормирование, извлечение деталей, картина солнечной активности
Текст
Текст произведения (PDF): Читать Скачать

BACKGROUND

The Sun is the only main sequence star with periodic activities that dominates the Sun-Earth environment and has impacts on human lives. Strong solar activities such as CMEs can affect spacecraft systems, disrupt communications, and even damage ground-based power systems. To understand and forecast the effects of solar activity on Earth’s environment remains one of the main research problems in solar physics. However, our understanding of the fundamental physics of solar activities is still poor. For example, the mechanism of formation of solar cycle variation is unclear so far. In the literature, the Maunder minimum is well-known, and the abnormally depressed solar activity between cycles 23 and 24 has recently started to be discussed. However, their occurrences are big puzzles to solar physicists. On the other hand, the existing observational data are not well calibrated and organized to serve efficient and precise investigations.

In particular, long-term observations are needed to study variation of solar activities in multiple solar cycles. Such activities include large-scale eruptions, Moreton waves, sympathetic eruptions, remote brightening [Tang, Moore, 1982], coronal dimming, filament oscillations, and so on. Systematic studies of these large-scale events are essential to understand the topological magnetic structures and hence the eruptive events.

The Moreton wave is a disturbance propagated by a wave and generally accompanied by a flare. It was first detected on Hα filtergrams by Moreton, Ramsey [1960]. So far, since Moreton wave events are not commonly observed, it is necessary to proceed to a more systematic analysis by taking advantage of the large Hα data sample all over the world.

The planned database is extremely useful in investigating large-scale helicity patterns, which are believed to have a close relationship with solar activities. For example, it can be used to study the possible sign reversal problem in the hemisphere helicity rule. (e.g., [Bao, Ai, Zhang, 2000; Hagino, Sakurai, 2002; Pevtsov et al, 2008]).

It is necessary to establish a complete filament catalog in multiple solar cycles. The statistics study of filament properties in many cycles is restricted by discontinuous observations, inconsistent calibration, and incomplete samples from different instruments. It is well known that filaments typically fall into three categories [Hansen R., Hansen S., 1975] according to their latitudes. We pay attention to large-scale filaments in middle and high latitudes as they are high contrast features and their properties are more closely connected with solar cycle problems [Brajsa et al. 1990]. Pevtsov, Balasubramaniam, Rogers [2003] studied chirality of chromospheric filaments, using a limited data set of scanned images from the NSO/SP database. In this project, we further promote the research into solar helicity and chirality problems (e.g., [Martin, Bilimoria, Tracadas, 1994; Rust, Martin, 1994; Pevtsov, Canfield, Metcalf, 1995]), through a complete, unified, and calibrated digitized full-disk Hα data set.

Список литературы

1. Aschwanden M.J. Image Processing Techniques and Feature Recognition in Solar Physics. Solar Phys. 2010, vol. 262, pp. 235-275.

2. Bao S.D., Ai G.X., Zhang H.Q. The Hemispheric Sign Rule of Current Helicity During the Rising Phase of Cycle 23, J. Astrophys. Astron. 2000, vol. 21, pp. 303-306.

3. Brajsa R, Vršnak B, Rundjak V., Schroll A. Polar Crown Filaments and Solar Differential Rotation at High Latitudes. IAU Colloquim. 1990, pp. 117-293.

4. Cui Zhao, GangHua Lin, YuanYong Deng, Xiao Yang. Automatic Recognition of Sunspots in HSOS Full-Disk Solar Images. Publications of the Astronomical Society of Australia. 2016, vol. 33. DOI:https://doi.org/10.1017/pasa.2016.17.

5. Ermolli I., Solanki S.K., Tlatov A.G., Krivova N.A., Ulrich R.K., Singh J. Comparison among CaII K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 2009, vol. 698, pp. 1000-1009.

6. Hansen R., Hansen S. Global distribution of filaments during solar cycle No. 20. Sol. Phys. 1975, vol. 44, pp. 225-230.

7. Hagino M., Sakurai T. Hemispheric helicity asymmetry in active regions for solar cycle 21-23. Proc. COSPAR Colloquia Ser. 2002, vol. 147.

8. Hao Q., Fang C., Chen P.F. Developing an advanced automated method for solar filament recognition and its scientific application to a solar cycle of MLSO Hα data Solar Phys. 2013, vol. 286, pp. 385-404.

9. Moreton G.E., Ramsey H.E. Recent observations of dynamical phenomena associated with solar flares. Publications of the Astronomical Society of the Pacific. 1960, vol. 72, pp. 357-358.

10. Martin S.F., Bilimoria R., Tracadas P.W. Magnetic field configurations basic to filament channels and filaments. Solar surface magnetism. NATO Advanced Science Institutes (ASI) Ser. C.: Mathematical and Physical Sciences, Proc. NATO Advanced Research Workshop. 1994, vol. 303.

11. Pevtsov A.A., Canfield R.C., Metcalf T.R. Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. Lett. 1995, vol. 440, pp. L109-112.

12. Pevtsov A.A., Balasubramaniam K.S., Rogers J.W. Chirality of chromospheric filaments. Astrophys. J. 2003, vol. 595, pp. 500-505.

13. Pevtsov A.A., Canfield R.C., Sakurai T., Hagino M. On the solar cycle variation of the hemispheric helicity rule. Astrophys. J. 2008, vol. 677, no. 1, pp. 719-722.

14. Qu M., Shih F.Y., Jing J., Wang H. Automatic solar flare detection using MLP, RBF, and SVM. Solar Phys. 2003, vol. 217, pp. 157-172. DOI:https://doi.org/10.1007/s11207-013-0285-9.

15. Rust D.M., Martin S.F. A correlation between sunspot whirls and filament type. Astronomical Society of the Pacific Conference Ser. 1994, vol. 68, pp. 337.

16. Sheng Zheng, Xiangyun Zeng, Ganghua Lin, Cui Zhao, Yongli Feng, Jinping Tao, Daoyuan Zhu, Li Xiong. Sunspot drawing handwritten character recognition method based on deep learning. New Astronomy. 2016, vol. 45, pp. 54-59.

17. Tang F., Moore R.L. Remote flare brightenings and type III reverse slope bursts. Solar Phys. 1982, vol. 77, pp. 263-276.

18. Yuan Y. Shih F.Y., Jing J., Wang H., Chae J. Automatic Solar Filament Segmentation and Characterization. Solar Phys. 2011, vol. 272, pp. 101. DOI:https://doi.org/10.1007/s11207-011-9798-2.

19. Zharkova V.V. et al. A full disk image standardization of the synoptic solar observation at the Meudon. ESA SP-506. 2002, vol. 2, pp. 975-978.

Войти или Создать
* Забыли пароль?