Могилев, Беларусь
Могилев, Беларусь
Представлено описание программного комплекса интеллектуальной поддержки принятия решений при управлении организацией сварочных работ и реализация технологии повышения эффективности процессов управления организацией сварочных работ с помощью разработанного программного комплекса. Комплекс объединяет модули обучения сварщиков, распределения задач, контроля качества и автоматического распознавания дефектов сварных швов. Основным элементом интеллектуальной поддержки принятия решений является реализация адаптивных алгоритмов роевого интеллекта (алгоритмы роения пчел, муравьиной колонии и светлячков) для формирования индивидуальных траекторий обучения и повышения квалификации персонала, а также эволюционного моделирования для рационального распределения сварочных заданий между исполнителями. Интеграция данных о дефектах, распознанных с помощью сверточных нейро-нечетких сетей, обеспечивает замкнутый цикл обратной связи, повышающий объективность оценки качества работ и обоснованность управленческих решений. Применение технологии повышения эффективности процессов управления организацией сварочных работ с помощью разработанного программного комплекса включающая шесть последовательных этапов – от идентификации дефектов до корректировки распределения задач после обучения. Разработанный подход позволяет повысить качество сварных соединений, снизить трудоемкость и сократить сроки выполнения работ.
управление организацией сварочных работ, поддержка принятия решений, эволюционное моделирование, алгоритм роения пчел, алгоритм муравьиной колонии, алгоритм светлячков, сверточные нейро-нечеткие сети, программный комплекс
Введение
Современные требования к качеству и надежности сварных конструкций в таких отраслях, как энергетика, машиностроение и транспорт, предъявляют повышенные запросы к управлению сварочным производством. Традиционные подходы к обучению сварщиков и организации сварочных работ, основанные на субъективной оценке квалификации сварщиков и ручном распределении задач между сварщиками, зачастую не обеспечивают достаточной эффективности в вопросах объективной непредвзятой оценки квалификации сварщиков, сопоставления квалификации сварщиков и требований заказчика в процессе распределения сварочных работ [1]. Одновременно растет потребность в повышении эффективности обучения и переподготовки сварщиков путем выбора наиболее подходящих учебных курсов и формирования индивидуальных траекторий обучения сварщиков с учётом качества работ (количества и типов дефектов сварных швов).
В условиях быстро изменяющейся внешней среды сварочного производства – от обновления нормативной базы до внедрения новых технологий сварки – актуальной является задача создания методики и программных средств, обеспечивающих повышение эффективности организации обучения сварщиков и распределения сварочных работ.
В работе [2] была предложена технология повышения эффективности управления сварочными работами, реализованная на основе комплексного использования алгоритмов роевого интеллекта, эволюционного моделирования в сочетании с применением сверточных нейро-нечетких сетей (СННС). В настоящей работе предлагается реализация данной технологии в виде программного комплекса интеллектуальной поддержки принятия решений при управлении организацией сварочных работ, который объединяет функции выбора лучших и перспективных учебных курсов, построения индивидуальных траекторий обучения сварщиков, распределение работ между сварщиками. Применение программного комплекса (ПК), обеспечивает повышение эффективности управления сварочными работами на основе интеграции методов мягких вычислений (алгоритмов роевого интеллекта, эволюционного моделирования, сверточных нейро-нечетких сетей), общей теории управления организационными системами и современных технологий контроля качества сварных швов. В разработанном ПК данные о дефектах сварных швов формируются автоматически с использованием СННС, становятся основой для формирования индивидуальных образовательных траекторий и рационального распределения задач между сварщиками. Применение алгоритмов роевого интеллекта позволяет сократить время и повысить качество обучения сварщиков. Применение эволюционного моделирования позволяет сократить количество дефектов сварных швов при выполнении сварочных работ.
Целью исследования является разработка состава и структуры ПК интеллектуальной поддержки принятия решений при управлении организацией сварочных работ и описание особенностей реализации технологии с его помощью.
Состав задач программного комплекса
Диаграмма вариантов использования ПК интеллектуальной поддержки принятия решений при управлении организацией сварочных работ представлена на рис. 1. Пользовательские истории, соответствующие каждому варианту использования разработанного ПК, представлены в табл. 1.
Рис. 1. Диаграмма вариантов использования программного комплекса интеллектуальной поддержки принятия решений при управлении организацией сварочных работ
Fig. 1. Diagram of options for using the software package for intelligent decision support in managing the organization of welding operations
Таблица 1
Table 1
Пользовательские истории
User Stories
|
Актер |
Действие |
Цель |
|
Руководитель сварочных работ |
регистрация сварочных работ |
сбор исходных данных о результатах выполнения работ на основе анализа дефектов сварных швов |
|
регистрация сварщика |
сбор исходных данных для поддержки принятия решений при назначении исполнителей на работы |
|
|
обработка информации о результатах работы сварщиков |
поддержка принятия решения при оценке необходимости переаттестации и повышения квалификации сварщика и распределения сварочных работ между исполнителями |
|
|
просмотр информации о сварщике |
получение информации о результатах обучения и работы сварщика |
|
|
анализ результатов обучения, аттестации и конкурсов |
поддержка принятия решений при выборе лучших и перспективных курсов, при построении индивидуальных траекторий обучения сварщиков |
|
|
поддержка принятия решений в процессе обучения сварщиков |
выбор лучших и перспективных курсов, построение индивидуальных траекторий обучения сварщиков |
|
|
назначение исполнителей на работы |
получение первоначального варианта распределения сварочных работ между исполнителями |
|
|
распределение работ между сварщиками с применением эволюционного моделирования |
получение рационального варианта распределения сварочных работ между исполнителями |
|
|
просмотр результатов распределения сварочных работ между исполнителями на основе эволюционного моделирования |
поддержка принятия решений о распределении сварочных работ между исполнителями |
|
|
Сварщик |
вывод списка работ (заданий) |
получение информации об используемых технологиях, сроках исполнения |
|
просмотр результатов контроля качества выполнения работ |
получение информации о фактических сроках исполнения, количестве дефектов, фактической трудоемкости |
Состав и структура программного комплекса
Программный комплекс интеллектуальной поддержки принятия решений при управлении организацией сварочных работ состоит из следующих модулей (рис. 2): модуль обучения сварщиков, модуль управления организационным процессом обучения сварщиков, модуль анализа результатов работы сварщиков, модуль распределения сварочных работ между исполнителями, модуль распознавания дефектов сварных швов на основе сверточных нейро-нечетких сетей. На рис. 2 выделены модули, содержащие авторские алгоритмы интеллектуальной поддержки принятия решений на основе мягких вычислений при управлении сварочными работами.
Рис. 2. Состав и структура программного комплекса интеллектуальной поддержки принятия решений при управлении организацией сварочных работ
Fig. 2. The composition and structure of the software package for intelligent decision support in managing the organization of welding operations
Модуль обучения сварщиков М1 обеспечивает учет и контроль прохождения сварщиками учебных курсов, повышения квалификации, аттестации, участие в конкурсах. Необходимость обучения и повышения квалификации определяется на основе результатов работы с учетом количества дефектов сварных швов. Данные о дефектах сварных швов для каждого сварщика по результатам работы, прохождения аттестации, участия в конкурсах попадают в модуль по результатам визуально-измерительного, рентгенографического и ультразвукового контроля.
Основной функцией модуля является анализ результатов обучения, аттестации и конкурсов для оценки качества обучения сварщиков (модуль М1). Данные поступают из базы данных «БД результатов обучения». Результатом выполнения данной функции является оценка качества обучения каждого сварщика каждому виду сварочных работ по результатам анализа количества дефектов сварных швов.
Вспомогательными функциями модуля являются:
- регистрация сварщика (модули М1 и М3) для ввода данных о сварщике. Для оценки уровня квалификации сварщик выполняет сварку контрольных образцов. Полученные данные сохраняются в базе данных «БД результатов работы» и в дальнейшем используются при обучении сварщиков и распределении сварочных работ между исполнителями;
- просмотр информации об сварщике (модули М1 и М3) для предоставления руководителю сварочных работ информации о результатах обучения и результатах работы каждого сварщика для последующего распределения сварочных работ между исполнителями. Данные поступают из баз данных «БД результатов обучения» и «БД результатов работы»;
- просмотр результатов контроля качества выполнения работ (модули М1, М3 и М5) сварщиком и руководителем сварочного производства. Результатом является предоставление информации о фактических сроках исполнения, количестве дефектов, фактической трудоемкости.
Модуль управления организационным процессом обучения сварщиков М2 предназначен для поддержки принятия решений при обучении сварщиков. В данном модуле реализованы авторские алгоритмы повышения эффективности обучения сварщиков с использованием алгоритмов роевого интеллекта.
Основной функцией модуля является поддержка принятия решений в процессе обучения сварщиков с применением алгоритма роения пчел для выбора лучших и перспективных курсов, алгоритма муравьиной колонии для формирования индивидуальных траекторий обучения сварщиков, алгоритма светлячков для формирования траекторий обучения сварщиков выбранным видам работ и технологиям [4, 5]. Данные о результатах распознавания дефектов сварных швов поступают из модуля М5. Информация о результатах обучения сварщиков поступает из базы данных «БД результатов обучения». Результатом выполнения данной функции является перечень лучших и перспективных курсов, индивидуальные траектории обучения сварщиков.
Модуль анализа результатов работы сварщиков М3 обеспечивает автоматизацию учета работы сварщиков. Использование технологий QR- и RFID-кодирования, средств автоматического распознавания дефектов сварных швов обеспечивает объективную непредвзятую оценку качества сварочных работ. Данный модуль позволяет анализировать результаты работы каждого сварщика и учитывать результаты анализа в процессе оценки необходимости обучения, переаттестации и распределения работ между сварщиками [6, 7].
Основной функцией модуля является обработка информации о результатах работы сварщиков на основе результатов визуально-измерительного, рентгенографического и ультразвукового контроля (модуль М3). Данные о результатах распознавания дефектов сварных швов поступают из модуля М5. Результатом выполнения данной функции является формирование для каждого сварщика перечня работ с перечнем количества и размеров каждого вида дефектов сварных швов.
Вспомогательной функцией модуля является регистрация сварочных работ (модуль М3) для ввода перечня сварочных работ на основании данных заказов, технологических процессов и технологических инструкций. Данные сохраняются в базе данных «БД сварочных работ».
Модуль распределения сварочных работ между исполнителями М4 предназначен для поддержки принятия решений руководителя сварочных работ при выдаче заданий сварщикам. В данном модуле реализован авторский алгоритм распределения сварочных работ между исполнителями на основе эволюционного моделирования [6 – 8].
Основной функцией модуля является распределение работ между сварщиками с применением эволюционного моделирования. Данные о результатах работы сварщиков поступают из базы данных «БД результатов работы». Результатом выполнения данной функции является рациональный вариант распределения сварочных работ между исполнителями.
Вспомогательными функциями модуля являются:
- просмотр результатов распределения сварочных работ между исполнителями для оценки результатов распределения сварочных работ между исполнителями руководителем. Результатом является предоставление руководителю сварочного производства информации о рациональном распределении работ между сварщиками, полученном по результатам эволюционного моделирования. В случае если несколько команд имеют одинаковый уровень качества и время выполнения работ, выбор состава команды осуществляется руководителем сварочного производства.
- назначение исполнителей на работы для формирования первоначального варианта распределения сварочных работ между исполнителями; для просмотра результатов распределения работ между сварщиками.
- вывод списка работ (заданий) сварщику. Результатом является предоставление информации сварщику перечня работ с указанием используемых технологий и сроков исполнения.
Модуль распознавания дефектов сварных швов на основе СННС М5 предназначен для автоматического распознавания дефектов на рентгеновских снимках сварных соединений на основе сверточных нейро-нечетких сетей [9]. Данный модуль разработан сторонним коллективом. Результаты рентгенографического контроля служат входными данными для нейросетевой модели, обученной с использованием ряда методов, включая подход «переключения задач», разработанный специально для условий ограниченного объёма обучающих данных. Он сочетает компактную архитектуру детектора YOLOv8 с небольшим рецептивным полем, стратегиями аугментации данных и приёмами трансферного обучения, что позволяет эффективно компенсировать дефицит размеченных изображений за счёт упрощённой структуры модели и снижения классового дисбаланса. Применение сверточных нейронных сетей обеспечивает автоматизацию процессов выявления, классификации и оценки критичности дефектов сварных швов, значительно сокращая время анализа. Результаты работы модуля используются в модуле обучения сварщиков и в модуле повышения эффективности работы сварщиков.
Реализация технологии повышения эффективности процессов управления организацией сварочных работ с помощью разработанного программного комплекса
Для повышения эффективности управления процессами обучения сварщиков и распределение заданий меду ними разработана технология, использующая описанный ПК [2]. Предварительно в ПК интеллектуальной поддержки принятия решений при управлении организацией сварочных работ вносятся данные о сварщиках, а также результаты выполненных ими ранее работ. Реализация технологии повышения эффективности процессов управления организацией сварочных работ с помощью разработанного ПК включает следующие этапы [4, 10].
Этап 1. Оценка первоначальных знаний, умений и навыков сварщиков на основе результатов сварки контрольных образцов. Модуль распознавания дефектов сварных швов используется на данном этапе для автоматического распознавания прожогов, трещин, непроваров, газовых пор и других дефектов сварных швов, появляющихся при сварке контрольных образцов. Модуль анализа результатов работы сварщиков на данном этапе используется для учета и анализа результатов ВИК, РК, УЗК контрольных образцов. Результаты данного этапа используются для поддержки принятий решений в модулях управления организационными процессами обучения сварщиков и распределения сварочных работ между исполнителями.
Этап 2. Комплексная обработка информации о результатах опыта работы сварщиков. На данном этапе используется модуль анализа результатов работы сварщиков для анализа результатов ВИК, РК, УЗК. Основой измерения размеров дефектов сварных швов являются методики, представленные в нормативно-технической документации [11 – 13]. Результаты анализа являются исходными данными для модуля распределения сварочных работ между исполнителями.
Этап 3. Обучение сварщиков востребованным технологиям и сварочным работам. На данном этапе используется модуль управления организационным процессом обучения сварщиков.
Шаг 3.1. Выбор лучших и перспективных курсов на основе алгоритма роения пчел. Реализация алгоритма приведена в виде псевдокода с пояснениями каждого шага.
АЛГОРИТМ РОЕНИЯ ПЧЕЛ (сварщик, все_курсы, требование)
НАЧАЛО
% Отфильтровать курсы по требуемому навыку
подходящие_курсы = все_курсы, у которых Навык == требование.Навык
% Отсортировать по эффективности: снижение дефектов на час обучения (по убыванию)
отсортированные_курсы = отсортировать(подходящие_курсы,
по ключу: курс.КоэффициентСниженияДефектов / курс.Продолжительность,
по убыванию)
% Выбрать топ-20 самых эффективных курсов (разведчики)
кандидаты = первые 20 курсов из отсортированные_курсы
% Среди кандидатов выбрать тот, который даёт наименьший уровень дефектов после прохождения
лучший_курс = кандидаты,
отсортированные по СимулироватьУровеньДефектовПосле(сварщик, курс),
взять первый (или ничего, если список пуст)
% Если ни одного курса нет, можно обработать ошибку, но в коде предполагается, что есть хотя бы один
ВЕРНУТЬ новый ТрекОбучения с:
Путь = [лучший_курс],
ОбщееСнижениеДефектов = лучший_курс.КоэффициентСниженияДефектов,
ОбщаяПродолжительность = лучший_курс.Продолжительность,
ИтоговаяОценка = 1.0 / лучший_курс.КоэффициентСниженияДефектов
КОНЕЦ
Рис. 3. Результаты работы алгоритма роения пчел
Fig. 3. Results of the bee swarm algorithm
Шаг 3.2. Формирование индивидуальных траекторий обучения сварщиков на основе алгоритма муравьиной колонии. Реализация алгоритма приведена в виде псевдокода, с пояснениями каждого шага.
АЛГОРИТМ МУРАВЬИНОЙ КОЛОНИИ (сварщик, все_курсы, требование)
НАЧАЛО
% Отфильтровать курсы по требуемому навыку
курсы_по_навыку = все_курсы, у которых Навык == требование.Навык
лучший_путь = пустой список курсов
лучший_уровень_дефектов = бесконечность
% Перебрать все возможные перестановки курсов
For перестановки ИЗ ВсеПерестановки(курсы_по_навыку)
текущий_уровень_дефектов = СимулироватьУровеньДефектов(сварщик, перестановка)
If текущий_уровень_дефектов < лучший_уровень_дефектов Then
лучший_уровень_дефектов = текущий_уровень_дефектов
лучший_путь = копия(перестановка)
End If
End
% Рассчитать итоговые метрики
итоговое_снижение_дефектов = СУММА(курс.КоэффициентСниженияДефектов для каждого курс в лучший_путь)
общая_продолжительность = СУММА(курс.Продолжительность для каждого курс в лучший_путь)
итоговая_оценка = 1.0 / лучший_уровень_дефектов
Return новый ТрекОбучения с:
Путь = лучший_путь,
ОбщееСнижениеДефектов = итоговое_снижение_дефектов,
ОбщаяПродолжительность = общая_продолжительность,
ИтоговаяОценка = итоговая_оценка
End
Рис. 4. Результаты работы алгоритма муравьиной колонии
Fig. 4. Results of the ant colony algorithm
Шаг 3.3. Обучение сварщиков выбранным видам работ на основе алгоритма светлячков. Реализация алгоритма приведена в виде псевдокода, с пояснениями каждого шага.
АЛГОРИТМ СВЕТЛЯЧКОВ (сварщик, все_курсы, требование)
НАЧАЛО
СОЗДАТЬ пустой трек_обучения
% Выбрать курсы, соответствующие требуемому навыку
курсы_по_навыку = все_курсы, у которых Навык == требование.Навык
% Рассчитать разницу в опыте
недостаток_опыта = требование.ТребуемыеГодыОпыта - сварщик.ГодыОпыта
% Определить, сколько курсов взять
If недостаток_опыта > 0 Then
количество_курсов = МИНИМУМ(недостаток_опыта, количество(курсы_по_навыку))
Else
количество_курсов = 1
End If
% Сформировать путь обучения
трек_обучения.Путь = первые количество_курсов из курсы_по_навыку
% Рассчитать суммарные метрики
трек_обучения.ОбщаяПродолжительность = СУММА(курс.Продолжительность для каждого курс в трек_обучения.Путь)
трек_обучения.ОбщееСнижениеДефектов = СУММА(курс.КоэффициентСниженияДефектов для каждого курс в трек_обучения.Путь)
трек_обучения.ИтоговаяОценка = 1.0 / (1 + трек_обучения.ОбщаяПродолжительность)
ВЕРНУТЬ трек_обучения
КОНЕЦ
Рис. 5. Результаты работы алгоритма светлячков
Fig. 5. Results of the firefly algorithm
Этап 4. Синтез рационального распределения работ между сварщиками на основе алгоритмов эволюционного моделирования. На данном этапе используется модуль распределения сварочных работ между исполнителями на основе эволюционного моделирования. Исходные данные для распределения (результаты ВИК, РК, УЗК сварных швов для каждого сварщика) поступают из модуля анализа результатов работы сварщиков.
Рис. 6. Результаты распределения работ между сварщиками на основе алгоритмов эволюционного моделирования
Fig. 6. Results of work distribution among welders based on evolutionary modeling algorithms
Результаты
- Разработан программный комплекс интеллектуальной поддержки принятия решений, обеспечивающий автоматизацию решения задач управления организацией сварочных работ на основе применения предложенной методики при управлении процессами обучения сварщиков и алгоритма распределения сварочных работ между исполнителями на основе эволюционного моделирования.
- Описана реализация технологии повышения эффективности процессов управления организацией сварочных работ с помощью разработанного ПК. Реализация описанной технологии с использованием разработанного ПК отличается комплексным применением алгоритмов роевого интеллекта, эволюционного моделирования и СННС для поддержки принятия решений при управлении организацией сварочных работ.
- Внедрение разработанного ПК при управления обучением сварщиков в ООО «ИНВЕСТАП-МАИНД» позволило сократить время обучения сварщиков на 20…30 %, что подтверждено актом внедрения. Внедрение разработанного ПК при распределении сварочных работ между исполнителями в ООО «ИНВЕСТАП-МАИНД» позволило сократить количество дефектов сварных соединений на 20…30 %, что подтверждено актом внедрения.
Заключение
Представленный ПК и технология его применения демонстрируют высокий потенциал в повышении эффективности управления сварочными работами. Интеграция автоматизированного контроля качества, адаптивных алгоритмов обучения и интеллектуального распределения задач позволяет перейти к управлению персоналом, основанному на объективных данных и прогнозировании.
Использование алгоритмов роевого интеллекта обеспечивает персонализацию обучения сварщиков с учётом их индивидуальных характеристик и производственных результатов, что способствует целенаправленному снижению количества дефектов. Эволюционное моделирование, в свою очередь, позволяет находить рациональные варианты распределения работ, минимизируя риски и оптимизируя использование кадровых ресурсов.
Важным достижением является создание замкнутого управленческого цикла: данные о дефектах → оценка квалификации → обучение → перераспределение задач → повторная оценка. Такой подход соответствует принципам адаптивного управления и обеспечивает непрерывное улучшение качества сварочных работ.
Разработанная система поддержки принятия решений обладает высоким потенциалом для масштабирования и адаптации под различные отрасли промышленности, где критически важны качество выполнения технологических операций, квалификация персонала и эффективность распределения задач.
1. РД 95 10436-91 Технологическая подготовка и организация сварочного производства монтажных и строительных предприятий.
2. Заровчатская Е.В., Захарченков К.В., Подвесовский А.Г. Технология повышения эффективности управления сварочными работами на основе мягких вычислений // Автоматизация и моделирование в проектировании и управлении. – 2025. – № 3(29). – С. 64-72.
3. Гавриленко М.А., Заровчатская Е.В. Разработка программного обеспечения для обучения сварщиков с использованием алгоритмов роевого интеллекта // Информационно-вычислительные технологии и их приложения: сборник статей XXIX Международной научно-технической конференции, Пенза, 15-16 августа 2025 года. – Пенза: Пензенcкий государственный аграрный университет, 2025. – С. 52-55.
4. Заровчатская Е.В., Мисник А.Е., Аверченков О.Е. Комплексное повышение эффективности управления обучением сварщиков на основе алгоритмов роевого интеллекта и эволюционного моделирования: Серия: Технические науки // Вестник Самарского государственного технического университета. – 2024. – Т. 32, № 1(81). – С. 56-73.
5. Карпенко А.П. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой: учебное пособие. – Москва: МГТУ им. Н. Э. Баумана, 2021. – 446 с.
6. Заровчатская Е.В., Захарченков К.В., Подвесовский А.Г. Алгоритм интеллектуальной поддержки принятия решений при управлении распределением сварочных работ между исполнителями // Эргодизайн. – 2025. – № 2 (28). – С. 117-125.
7. Заровчатская Е.В., Зотов А.Ю. Разработка программного обеспечения распределения сварочных работ на основе эволюционного моделирования // Информационно-вычислительные технологии и их приложения: сборник статей XXIX Международной научно-технической конференции, Пенза, 15-16 августа 2025 года. – Пенза: Пензенcкий государственный аграрный университет, 2025. – С. 70-73.
8. Гладков Л.А., Курейчик В.В., Курейчик В.М. Генетические алгоритмы. – Москва: ФИЗМАТЛИТ, 2010. – 368 с.
9. Капелько Э.А., Мисник А.Е. Обнаружение дефектов сварки на малых данных // Интегрированные модели и мягкие вычисления в искусственном интеллекте (ИММВ-2024) Сборник научных трудов XII Международной научно-практической конференции. В 2-х томах, Коломна, 14-17 мая 2024 года. – Смоленск: Универсум, 2024. – С. 285-292.
10. Заровчатская Е.В., Мисник А.Е. Интеллектуальное управление информационно-измерительной системой сварочного производства // Интегрированные модели и мягкие вычисления в искусственном интеллекте ИММВ-2024: Сборник научных трудов XII Международной научно-практической конференции. В 2-х томах, Коломна, 14–17 мая 2024 года.: № 214. – Коломна: Общероссийская общественная организация «Российская ассоциация искусственного интеллекта», 2024. – Т. 2. – С. 214-223.
11. ГОСТ Р ИСО 1763-2014 Контроль неразрушающий. Визуальный контроль соединений, выполненных сваркой плавлением: национальный стандарт Российской Федерации: издание официальное: утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 30 сентября 2014 г. № 1241-ст. – Москва: Стандартинформ, 2015. – 21 с.
12. ГОСТ Р ИСО 7512-82 Контроль неразрушающий. Соединения сварные. Радиографический метод: национальный стандарт Российской Федерации: издание официальное: утвержден и введен в действие Постановлением Государственного комитета СССР по стандартам от 20 декабря 1982 г. № 4923. – Москва: Стандартинформ, 2019. – 27 с.
13. ГОСТ Р 55724-2013 Контроль неразрушающий. Соединения сварные. Методы ультразвуковые: национальный стандарт Российской Федерации: издание официальное: утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 08 ноября 2013 г. № 1410-ст. – Москва: Стандартинформ, 2015. – 21 с.




