МЕТОД БАЗИРОВАНИЯ И ЗАКРЕПЛЕНИЯ СЛОЖНЫХ ДЕТАЛЕЙ, ПОЛУЧЕННЫХ С ПОМОЩЬЮ АДДИТИВНЫХ ТЕХНОЛОГИЙ
Аннотация и ключевые слова
Аннотация (русский):
Приведенное исследование посвящено разработке нового метода базирования и закрепления деталей, изготовленных с помощью аддитивных технологий (АТ), для повышения эффективности их последующей механической обработки. Предлагаемый подход основан на использовании специальных приспособлений, конструкция которых учитывает особенности геометрии и свойств деталей АТ. В ходе работы проведен анализ существующих методов базирования и закрепления деталей АТ, выявлены их основные недостатки, такие как низкая точность и надежность базирования, сложность наладки, высокие трудозатраты при изготовлении специальной оснастки. Разработанный новый метод базирования и закрепления деталей АТ позволяет повысить производительность обработки, сократить время переналадки и обеспечить надежную защиту от проворота. Проведенные экспериментальные исследования подтвердили эффективность предлагаемого метода. Полученные результаты могут быть применены при организации эффективных технологических процессов механической обработки деталей, изготовленных с помощью АТ, на машиностроительных предприятиях. Это позволит снизить трудоемкость и повысить качество обработки, а также сократить сроки подготовки производства. Кроме того, предлагаемый метод базирования и закрепления деталей АТ может найти применение при обработке изделий сложной геометрической формы, изготовленных методами 3D-печати. Важным аспектом является также возможность интеграции предлагаемого метода базирования и закрепления деталей АТ в автоматизированные производственные системы. Использование специальных приспособлений с возможностью быстрой переналадки позволит оптимизировать процессы механической обработки и повысить гибкость производства. В целом, результаты проведенного исследования вносят значимый вклад в развитие технологий механической обработки деталей, изготовленных с помощью аддитивных технологий.

Ключевые слова:
аддитивные технологии, базирование, закрепление
Текст
Текст (PDF): Читать Скачать

Введение

 

Современные аддитивные технологии (АТ), такие как селективное лазерное плавление (SLM), позволяют создавать детали сложной пространственной конфигурации, невозможной или очень сложной для изготовления с помощью традиционных методов механической обработки [1]. Это открывает широкие возможности для применения генеративного дизайна, бионического дизайна и других передовых подходов, обеспечивающих улучшение функциональных характеристик изделий [2, 3].

Но все же, не смотря на всю перспективность данных технологий, применение их сопряжено с рядом ограничений и проблем, которые требуют тщательного изучения и решения. Во-первых, сложная геометрия заготовок, полученных методом SLM, затрудняет их базирование и закрепление для последующей механической обработки [4, 5]. А это чаще всего необходимо, так как требуемые параметры точности поверхностей превышают на данном этапе возможности оборудования для 3D-печати. Прямая связь со сложной формой деталей, наличием тонких стенок, сложных внутренних полостей и других особенностей. Во-вторых, высокая стоимость оборудования и расходных материалов для аддитивного производства может свести на нет экономические преимущества технологии при необходимости использования дорогостоящей специальной оснастки [6, 7]. В-третьих, качество поверхности деталей, изготовленных методом SLM, зачастую не соответствует предъявляемым требованиям, что требует применения дополнительных операций финишной обработки [8, 9].

Таким образом, актуальной научно-технической задачей является разработка эффективных методов базирования и закрепления сложных деталей, полученных аддитивным способом, для последующей точной механической обработки в условиях единичного и мелкосерийного производства, без применения дорогостоящей специальной оснастки. Решение данной задачи позволит в полной мере реализовать преимущества АТ, расширить их область применения и повысить конкурентоспособность изделий.

Целью настоящей работы является разработка метода базирования и закрепления сложных деталей, полученных методом АТ,
для последующей точной механической обработки.

 

Методы

 

Исходя из информации о типичных деталях, актуальных для военно-промышленного комплекса, можно сформулировать следующие направления исследования.

Ключевым объектом исследования выступают детали, полученные методом селективного лазерного плавления (SLM), имеющие наружные цилиндрические поверхности диаметром в диапазоне от 6 до 20 мм. Эти детали, такие как корпуса и втулки, характеризуются наличием элементов, ориентированных под различными углами относительно оси цилиндра. К таким деталям предъявляются повышенные требования по точности изготовления самих элементов, а также по точности их взаимного расположения, более высокие по сравнению с требованиями, типичными для деталей, полученных методом АТ.

На основании приведенного описания деталей, требований к их обработке и существующих проблем при базировании, предлагаются следующие методы исследования: проведен анализ геометрических особенностей типовых деталей, полученных методом селективного лазерного плавления (SLM), включающий изучение формы, размеров и расположения цилиндрических поверхностей, плоских элементов и отверстий, а также оценку качества поверхностей, в том числе наличия дефектов;  проведено экспериментальное исследование методов базирования и закрепления деталей с разработкой и апробацией различных схем базирования, оценкой точности позиционирования заготовок и анализом влияния качества поверхностей на надежность базирования.

Кроме того, проведено математическое моделирование процессов базирования и закрепления деталей с построением расчетных схем и математических моделей для анализа напряженно-деформированного состояния системы с проведением вычислительных экспериментов для оптимизации параметров базирования и закрепления.

Завершающий этап ‒ предложенный метод и экспериментальная апробация эффективного способов базирования и закрепления деталей, полученных методом АТ.

 

Результаты и обсуждения

 

После проведения анализа и экспериментального исследования предлагается для базирования и закрепления деталей, полученных методами АТ, для дальнейшей доработки использовать предусмотренные заранее на цилиндрической поверхности детали радиусные элементы на длину порядка диаметра цилиндра.  Таким образом, в качестве приспособления использовать трехкулачковый самоцентрирующий патрон с сырыми кулачками или патрон цанговый с алюминиевыми цангами. И вместо классического растачивания посадочного места использовать расфрезеровывание.
 

Предлагаемый метод базирования и закрепления деталей, полученных методом АТ, помимо обеспечения надежного базирования по оси Y и углу, обладает рядом дополнительных преимуществ:

1. Возможность обработки серии заготовок с одной наладки. Это позволяет повысить производительность и сократить время переналадки.

2. Быстрая наладка. В отличие от классического растачивания посадочного места, предлагаемый метод расфрезеровывания приспособления занимает незначительно больше времени, что важно, поскольку час работы таких станков стоит дорого.

3. Надежная защита от проворота во время обработки. Применение радиусных элементов обеспечивает равномерный зажим заготовки, в отличие от использования лысок.

4. Возможность повторного использования оставшейся цилиндрической части доработанного элемента заготовки для базирования детали, в отличие от классического треугольника Рёло.

5. Расфрезеровывание приспособления может выполняться стандартными концевыми фрезами.

6. Небольшой съем материала на цилиндрической части заготовки (около
0,2 мм) делает предлагаемый способ подходящим для чистовой обработки тонкостенных деталей.

Важным аспектом является также высокая точность базирования. Теоретическая оценка погрешности базирования основана на классическом расчете базирования по двум цилиндрам, где погрешность складывается из двух слагаемых: зазора между штифтом и отверстием, а также погрешности расположения осей элементов приспособления. В предлагаемом методе, за счет применения патрона или цанги, зазор между штифтом и отверстием отсутствует. Остается только вторая составляющая, которая зависит от точности самого станка с ЧПУ и, как правило, составляет 1…2 мкм.

Рассмотрим геометрию кулачков для данного метода (рис. 2). На рис. 2 представлены три варианта исполнения кулачков для доработки деталей: а ‒ выполнен по форме заготовки, но в плюс от размера детали; б ‒ тоже выполнен по форме заготовки, но в минус от размера детали;
в ‒ предлагаемый метод закрепления.

 

Выводы

 

По результатам приведенного анализа и расчетов можно сделать следующие выводы:

1. Предложенный метод базирования и закрепления деталей АТ с использованием трехкулачкового самоцентрирующего патрона или цангового патрона обеспечивает надежное базирование по оси Y и углу.

2. Данный метод имеет ряд преимуществ по сравнению с классическим растачиванием посадочного места, включая: повышение производительности, сокращение времени переналадки, простоту наладки, надежную защиту от проворота, возможность повторного использования заготовки и др.

3. Предлагаемый способ обеспечивает высокую точность базирования за счет отсутствия зазора между штифтом и отверстием и точности самого станка с ЧПУ.

 Проведено экспериментальное исследование, подтвердившее эффективность предлагаемого метода. Результаты работы могут быть использованы при организации эффективных технологических процессов механической обработки деталей, изготовленных с помощью АТ, на машиностроительных предприятиях.

Список литературы

1. Kruth J.P., Vandenbroucke V., Vaerenberg J.V., Mercelis P. Benchmarking of different SLM/SLS processes as rapid manufacturing technics.  Int. Conf. Polymers and moulds innovations (PMI), Gent, Belgium, April 2005.

2. Рыбаков В.А. Применение генеративного дизайна при проектировании изделий // Матер. докл-в 55-й МНТК преподавателей и студентов : в 2-х т., Витебск, 27 апреля 2022 г. Т. 2. Витебск: Витебский государственный технологический университет, 2022. С. 382–384. EDN GEYETG.

3. Боровков А.И. Бионический дизайн // Бионика. 60 лет. Итоги и перспективы: Сб. статей 1-й МНТК Москва, 17–19 декабря 2021 г. / под редакцией А.П. Карпенко. М.: Ассоциация технических университетов, 2022. С. 18–29. DOIhttps://doi.org/10.53677/9785919160496_18_29. EDN EMIMLT.

4. Чуканов А.Н. Формирование структурных дефектов SLM технологии // Современные материалы, техника и технологии. 2023. № 6(51). С. 29–36. EDN VPVTVZ.

5. Осколков А.А. Передовые технологии аддитивного производства металлических изделий // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. 2018. Т. 20. № 3. С. 90–105. DOIhttps://doi.org/10.15593/2224-9877/2018.3.11. EDN YGHHLV.

6. Дожделев А.М., Лаврентьев А.Ю. Особенности 3D-печати металлических изделий // Международный журнал гуманитарных и естественных наук. 2021. № 6 (57). С. 18–20. DOIhttps://doi.org/10.24412/2500-1000-2021-6-1-18-20. EDN FVUERE.

7. Доц М.В., Головачев А.М. Металлические порошки для аддитивных технологий // Инновации в машиностроении (ИнМаш-2023): Сборник трудов XIV Международной научно-практической конференции, Кемерово, 26 ноября 2023 г. Кемерово: Кузбасский государственный технический университет им. Т.Ф. Горбачева, 2023. С. 41‒45. EDN CCFZTN.

8. Левина Т.А., Сафонов Е.В., То М.Х. Анализ методов и средств оценки качества поверхностного слоя изделий, получаемых SLM-методом из жаропрочных сплавов // Пром-Инжиниринг: Труды VII всероссийской научно-технической конференции, 17–21 мая 2021 г. Челябинск: Издательский центр ЮУрГУ, 2021. С. 90–96. EDN ZSDJQV.

9. Балякин А.В., Жученко Е.И., Смирнов Г.В., Проничев Н.Д. Исследование проблем появления негативной технологической наследственности при изготовлении деталей ГТД методом селективного лазерного сплавления // Известия Самарского научного центра Российской академии наук. 2019. Т. 21, № 1 (87). С. 61–70. EDN XHSWIU.

10. Зленко М.А., Попович А.А., Мутылина И.Н. Аддитивные технологии в машиностроении. Учебное пособие. Санкт- Петербург, 2013. 221 С.

11. Дубровина Н.А. Инновационные технологии в машиностроении // Вестник Самарского университета. Экономика и управление. 2021. Т. 12, № 1. C. 108–115

Рецензии
1. Метод базирования и закрепления сложных деталей, полученных с помощью аддитивных технологий Авторы: Прокофьев Александр Николаевич

Войти или Создать
* Забыли пароль?