Якутск, Россия
с 01.01.2021 по настоящее время
Северо-Восточный федеральный университет им. М.К. Аммосова (доцент)
с 01.01.2018 по 01.01.2021
Якутск, Республика Саха (Якутия), Россия
Якутск, Россия
Якутск, Россия
A statistical analysis of vertical ionospheric sounding data from the Yakutsk station (62.01° N, 129.43° E, 57.12° MLAT) for the period from 1956 to 2017 encompassing six solar cycles has been carried out to identify long-term changes in the F2 layer of the subauroral ionosphere and their relationship with solar and geomagnetic activity. We examined variations in one of the main parameters of the ionospheric F2 layer, the critical frequency. A high correlation was found between the F2-layer critical frequency and the solar activity index F10.7. It is shown that during six solar cycles (cycles 19–24) there were negative trends in annual average F2-layer critical frequencies both at midday and at midnight. It has been revealed that foF2 trends depend on the season and time of day. Absolute values of the trends are higher in equinoctial and summer seasons. Peak negative trends are observed at midday during equinoctial months, reaching approximately –11 kHz/year.
long-term trends, solar activity, subauroral ionosphere, F2-layer critical frequencies
1. Alfonsi L., De Franceschi G., Perrone L., Scotto C. Long-term trends of the ionosphere at mid and high latitude regions. Proc. URSI. 2002, p. 1797. URL: https://www.ursi.org/proceedings/procGA02/papers/p1797.pdf (accessed May 30, 2025).
2. Bremer J. Trends in the ionospheric E and F regions over Europe. Ann. Geophys. 1998, vol. 16, iss. 8, pp. 986–996. DOI:https://doi.org/10.1007/s00585-998-0986-9.
3. Bremer J., Alfonsi L., Bencze P., Laštovička J., Mikhailov A.V., Rogers N. Long-term trends in the ionosphere and upper atmosphere parameters. Ann. Geophys. 2004, vol. 47, pp. 1009–1029. DOI:https://doi.org/10.4401/ag-3283.
4. Bremer J., Damboldt T., Mielich J., et al. Comparing long-term trends in the ionospheric F2 region with two different methods. J. Atmos. Solar-Terr. Phys. 2012, vol. 77, pp. 174–185. DOI:https://doi.org/10.1016/j.jastp.2011.12.017.
5. Brunelli B.E., Namgaladze A.A. Fizika ionosfery [Physics of the ionosphere]. Moscow, Nauka Publ., 1988, 527 p. (In Russian).
6. Cnossen I., Franzke C. The role of the Sun in long-term change in the F2 peak ionosphere: New insights from EEMD and numerical modeling. J. Geophys. Res. Space Phys. 2014, vol. 119, pp. 8610–8623. DOI:https://doi.org/10.1002/2014JA020048.
7. Danilov A.D. Long-term trends in the relation between daytime and nighttime values of foF2. Ann. Geophys. 2008, vol. 26, iss. 5, pp. 1199–1206. DOI:https://doi.org/10.5194/angeo-26-1199-2008.
8. Danilov A.D. Critical frequency foF2 as an indicator of trends in thermospheric dynamics. J. Atmos. Solar-Terr. Phys. 2009, vol. 71, iss. 13, pp. 1430–1440.DOI:https://doi.org/10.1016/j.jastp.2008.04.001.
9. Danilov A. Seasonal and diurnal variations in foF2 trends. J. Geophys. Res. 2015, vol. 120, pp. 3868–3882. DOI:https://doi.org/10.1002/2014JA020971.
10. Danilov A. New results in studying foF2 trends. J. Atmos. Solar-Terr. Phys. 2017, vol. 163, pp. 103–113. DOI:https://doi.org/10.1016/j.jastp.2017.04.002.
11. Danilov A.D., Mikhailov A.V. Letter to the Editor: Spatial and seasonal variations of the foF2 long-term trends. Ann. Geophys. 1999, vol. 17, iss. 9, pp. 1239–1243. DOI:https://doi.org/10.1007/s00585-999-1239-2.
12. Danilov A.D., Konstantinova A.V. Behavior of parameters of the ionospheric F2 layer at the turn of the centuries: 1. Critical frequency. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2013, vol. 53, iss. 3, pp. 345–355. DOI:https://doi.org/10.7868/S0016794013030048. (In Russian).
13. Danilov A.D. Konstantinova A.V. Relationship between foF2 trends and geographic and geomagnetic coordinates. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2014, vol. 54, pp. 323–328. DOI:https://doi.org/10.7868/S0016794014030043. (In Russian).
14. Danilov A.D., Konstantinova A.V. Variations in foF2 trends with season and local time Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2015, vol. 55, iss. 1, pp. 51–58. DOI:https://doi.org/10.7868/S0016794015010046. (In Russian).
15. Danilov A.D., Konstantinova, A.V. Long-term variations in the parameters of the middle and upper atmosphere and ionosphere (review). Geomagnetism and Aeronomy. 2020, vol. 60, iss. 4, pp. 397–420. DOI:https://doi.org/10.1134/S0016793220040040.
16. Danilov A.D., Berbeneba N.A., Konstantinova A.V. Trends in the F2-layer parameters to 2023. Adv. Space Res. 2024, vol. 73, iss. 12, pp. 6054–6065. DOI:https://doi.org/10.1016/j.asr.2024.03.036.
17. Galperin Yu.I., Sivtseva L.D., Filippov V.M., Khalipov VL. Subauroral upper ionosphere. Novosibirsk, Nauka Publ., 1990, 192 p. (In Russian).
18. Jakowski N., Hoque M.M., Mielich J. Long-term relationships of ionospheric electron density with solar activity. Journal of Space Weather and Space Climate. 2024, vol. 14, iss. 24. DOI:https://doi.org/10.1051/swsc/2024023.
19. Kolesnik S.A., Pikalov M.V., Kolmakov A.A. Features of long-term trends of the main parameters of the F2 region of the ionosphere in Tomsk. Rasprostranenie radiovoln. Trudy XXVI Vserossiiskoi nauchnoi konferentsii (RRV-26) [Radio Wave Propagation. Proceedings of the XXVI All-Russian Scientific Conference (RRV-26)]. Kazan, 2019, vol. 1, pp. 196–202. (In Russian).
20. Laštovička J. On the role of solar and geomagnetic activity in long-term trends in the atmosphere–ionosphere system. J. Atmos. Solar-Terr. Phys. 2005, vol. 67, iss. 1, pp. 83–92. DOI:https://doi.org/10.1016/j.jastp.2004.07.019.
21. Laštovička J. A review of recent progress in trends in the upper atmosphere. J. Atmos. Solar-Terr. Phys. 2017, vol. 163, pp. 2–13. DOI:https://doi.org/10.1016/j.jastp.2017.03.009.
22. Laštovička J. Long-term changes in ionospheric climate in terms of foF2. Atmosphere. 2022, vol. 13, iss. 1, p. 110. DOI:https://doi.org/10.3390/atmos13010110.
23. Laštovička J., Jelínek Š. Problems in calculating long-term trends in the upper atmosphere. J. Atmos. Solar-Terr. Phys. 2019, vol. 18, iss. 10, pp. 80–86. DOI:https://doi.org/10.1016/j.jastp.2019.04.011.
24. Laštovička J., Mickailov A.V., Ulich T., Bremer J., Elias A.G., Ortiz de Adler N., et al. Long-term trends in foF2: A comparison of various methods. J. Atmos. Solar-Terr. Phys. 2006, vol. 68, iss. 17, pp. 1854–1870. DOI:https://doi.org/10.1016/j.jastp.2006.02.009.
25. Laštovička J., Akmaev R.A., Beig G., Bremer J., Emmert J.T., Jacobi C., et al. Emerging pattern of global change in the upper atmosphere and ionosphere. Ann. Geophys. 2008a, vol. 26, iss. 5, pp. 1255–1268. DOI:https://doi.org/10.5194/angeo-26-1255-2008.
26. Laštovička J., Yue X., Wan W. Long-term trends in foF2: their estimating and origin. Ann. Geophys. 2008b, vol. 26, pp. 593–598. DOI:https://doi.org/10.5194/angeo-26-593-2008.
27. Laštovička J., Solomon S.C., Qian L. Trends in the neural and ionized upper atmosphere. Space Sci. Rev. 2012, vol. 168, pp. 113–145. DOI:https://doi.org/10.1007/s11214-011-9799-3.
28. Mielich J., Bremer J. Long-term trends in the ionospheric F2 region with two different solar activity indices. Ann. Geophys. 2013, vol. 31, iss. 2, pp. 291–303. DOI:https://doi.org/10.5194/angeo-31-291-2013.
29. Mikhailov A.V., Marin D. Geomagnetic control of the foF2 long-term trends. Ann. Geophys. 2000, vol. 18, pp. 653–665. DOI:https://doi.org/10.1007/s00585-000-0653-2.
30. Reinisch B. The digisonde portable sounder – DPS. Technical manual. Version 4.3. University of Massachusetts Lowell Center for Atmospheric Research, 2007, 404 p.
31. Rezac L., Yue J., Yongxiao J., Russell J.M. III, Garcia R., López-Puertas M., Mlynczak M.G. On long-term SABER CO2 trends and effects due to nonuniform space and time sampling. J. Geophys. Res.: Space Phys. 2018, vol. 123, pp. 7958–7967. DOI:https://doi.org/10.1029/2018JA025892.
32. Rishbeth H. A greenhouse effect in the ionosphere? Planet Space Sci. 1990, vol. 38, pp. 945–948. DOI:https://doi.org/10.1016/0032-0633(90)90061-T.
33. Rishbeth H. Long-term changes in the ionosphere. Adv. Space Res. 1997, vol. 20, pp. 2149–2155. DOI:https://doi.org/10.1016/S0273-1177(97)00607-8.
34. Roble R.G., Dickinson R.E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys. Res. Lett. 1989, vol. 16, pp. 1441–1444. DOI:https://doi.org/10.1029/GL016i012p01441.
35. Rukovodstvo URSI po interpretatsii i obrabotke ionogramm [URSI Guide to Ionogram Interpretation and Processing]. Trans. from English. Ed. N.V. Mednikova. Moscow, Nauka Publ., 1977, 342 p. (In Russian).
36. Sivakandan M., Mielich J., Renkwitz T., Chau J.L., Jaen J., Laštovička J. Long-term variations and residual trends in the E, F, and sporadic E (Es) layer over Juliusruh, Europe. J. Geophys. Res.: Space Phys. 2023, vol. 128, iss. 4. DOI:https://doi.org/10.1029/2022JA031097.
37. Vasiliev G.V., Vasiliev K.N., Goncharov L.P. Automatic panoramic ionospheric station of the AIS type. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1961, vol. 1, no. 1, pp. 120–127. (In Russian).
38. Zherebtsov G.A., Ratovsky K.G., Medvedeva I.V. Long-term variations in peak electron density and temperature of mesopause region: Dependence on solar, geomagnetic, and atmospheric activities, long-term trends. Sol.-Terr. Phys. 2024, vol. 10, iss. 4, pp. 3–13. DOI:https://doi.org/10.12737/stp-104202401.
39. URL: http://www.wdcb.ru/stp/data/solar.act/flux10.7/ (accessed May 30, 2025).
40. URL: https://wdc.kugi.kyoto-u.ac.jp/ (accessed May 30, 2025).



