Санкт-Петербургский государственный университет,
Санкт-Петербург, г. Санкт-Петербург и Ленинградская область, Россия
Шаньдунский институт перспективных технологий
Москва, Россия
Москва, Россия
Санкт-Петербург, г. Санкт-Петербург и Ленинградская область, Россия
Цзинань, Шаньдун, Китайская Народная Республика
Пекин, Китайская Народная Республика
Цзинань, Шаньдун, Китайская Народная Республика
The paper presents the results of MHD modeling of corotating interaction regions (CIRs) at distances of 0.1 AU from the Sun (inner boundary) to much larger distances (20–30 AU) in two variants in which the magnetic field on the photosphere (1) is determined from a detailed synoptic map and (2) is represented only by the dipole component. The calculations are made for Carrington rotation 2066 (January–February 2008), using two independent software packages of Russian and Chinese groups. The time period under study is characterized by the presence of long-lived coronal holes on the Sun and a stable recurrent variation in heliosphere characteristics, as well as in the intensity of galactic cosmic rays. We discuss the advantages and disadvantages of modeling CIRs by detailed and dipole models of the photospheric magnetic field, as well as with the two mentioned software packages. The mechanisms of formation and evolution of CIRs with distance in the two models are compared and correlated to the conclusions of our previous works.
heliosphere, corotating interaction regions (CIRs), MHD simulation of CIRs, detailed and dipole CIR models
1. Arge C.N., Pizzo V.J. Improvement in the prediction of solar wind conditions using near‐real time solar magnetic field updates. J. Geophys. Res.: Space Phys. 2000, vol. 105, no. A5, pp. 10465–10479. DOI:https://doi.org/10.1029/1999JA900262.
2. Arutyunyan S.N., Kodukov A.V., Subbotin M.O., Pavlov D.A. A prototype of a background solar wind forecasting service based on MHD modeling and WSA boundary conditions. Cosmic Res. 2023, vol. 61, no. 6, pp. 447–453. DOI:https://doi.org/10.1134/S0010952523700508.
3. Belcher J.W., Davis Jr L. Large‐amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 1971, vol. 76, no. 16, pp. 3534–3563. DOI:https://doi.org/10.1029/JA076i016p03534.
4. Burlaga L.F., Klein L.W., Lepping R.P., Behannon K.W. Large‐scale interplanetary magnetic fields: Voyager 1 and 2 observations between 1 AU and 9.5 AU. J. Geophys. Res.: Space Phys. 1984, vol. 89, no. A12, pp. 10659–10668. DOI:https://doi.org/10.1029/JA089iA12p10659.
5. Forsyth R.J., Gosling J.T. Corotating and transient structures in the heliosphere. The Heliosphere Near Solar Minimum. The Ulysses Perspective. 2001, pp. 107–166.
6. Gosling J.T., Pizzo V.J. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 1999, vol. 89, no. 1, pp. 21–52. DOI:https://doi.org/10.1023/A:1005291711900.
7. Guo X., Florinski V. Corotating interaction regions and the 27 day variation of galactic cosmic rays intensity at 1 AU during the cycle 23/24 solar minimum. J. Geophys. Res.: Space Phys. 2014, vol. 119, no. 4, pp. 2411–2429. DOI:https://doi.org/10.1002/2013JA019546.
8. Guo X., Florinski V. Galactic cosmic-ray intensity modulation by corotating interaction region stream interfaces at 1 AU. Astrophys. J. 2016, vol. 826, no. 1, p. 65. DOI:https://doi.org/10.3847/0004637X/826/1/65.
9. Hoeksema J.T. Structure and Evolution of the Large Scale Solar and Heliospheric Magnetic Fields: Thesis ... PhD in Physics, Stanford University. 1984, 222 p.
10. Hundhausen A.J., Gosling J.T. Solar wind structure at large heliocentric distances: An interpretation of Pioneer 10 observations. J. Geophys. Res. 1976, vol. 81, no. 7, pp. 1436–1440. DOI:https://doi.org/10.1029/JA081i007p01436.
11. Kalinin M.S., Krainev M.B., Luo S., Podgiter M.S. The influence of corotating regions of interaction of the solar wind on long-term variations in the intensity of galactic cosmic rays. Geomagnetism and Aeronomy. 2023, vol. 63, no. 5, pp. 570–580, DOI:https://doi.org/10.31857/S0016794023600606.
12. Kalinin M.S., Krainev M.B., Luo S., Podgiter M.S. Effect of corotating interaction regions of solar wind on GCR intensity in 2D modulation problems. Geomagnetism and Aeronomy. 2024, vol. 64, no. 7, pp. 104–114. DOI:https://doi.org/10.1134/S0016793224700154R.
13. Krainev M.B., Kalinin M.S., Bazilevskaya G.A., Svirzhevs-kaya A., Svirzhevsky N., Luo Xi, Aslam O.P.M., et al. Manifestation of solar wind corotating interaction regions in GCR intensity variations Sol.-Terr. Phys. 2023, vol. 9, iss. 1, pp. 9–20. DOI:https://doi.org/10.12737/stp-91202302.
14. Kopp A., Wiengarten T., Fichtner H. Cosmic-ray transport in heliospheric magnetic structures. II. Modeling particle transport through corotating interaction regions. Astrophys. J. 2017, vol. 837, no. 1, p. 37. DOI:https://doi.org/10.3847/1538-4357/aa603b.
15. Luo X., Zhang M., Feng X., Potgieter M, Shen F., Bazilevskaya G.A. A numerical study of the effects of corotating interaction regions on cosmic-ray transport. Astrophys. J. 2020, vol. 899, no. 2, p. 90. DOI:https://doi.org/10.3847/1538-4357/aba7b5.
16. Luo X., Potgieter M.S., Krainev M., et al. A numerical study of the effects of a corotating interaction region on cosmic-ray transport: Some features of different cosmic-ray composition and rigidity. 38th International Cosmic Ray Conference (ICRC2023). Nagoya, 2023.
17. Luo X., Potgieter M.S., Zhang M., Shen F. A numerical study of the effects of a corotating interaction region on cosmic-ray transport. II. Features of cosmic-ray composition and rigidity. Astrophys. J. 2024, vol. 961, no. 1, p. 21. DOI:https://doi.org/10.3847/1538-4357/ad0cb6.
18. Mignone A., Bodo G., Massagila S., Matsakos T., Tesileanu O., Zanni C., Ferrari A. PLUTO: A numerical code for computational astrophysics. Astrophy. J. Suppl. Ser. 2007, vol. 170, no. 1, p. 228. DOI:https://doi.org/10.1086/513316.
19. Modzelewska R., Bazilevskaya G.A., Boezio M., Koldashov S.V., Krainev M.B., Marcelli N., Mayorov A.G., et al. Study of the 27 day variations in GCR fluxes during 2007–2008 based on PAMELA and ARINA observations. Astrophys. J. 2020, vol. 904, no. 3, p. 13. DOI:https://doi.org/10.3847/1538-4357/abbdac.
20. Nikolic L. Modelling the magnetic field of the solar corona with potential-field source-surface and Schatten current sheet models. Natural Resources Canada. Geological Survey of Canada, open file. 2017.
21. Parker E.N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 1958, vol. 128, p. 664. DOI:https://doi.org/10.1086/146579.
22. Pizzo V.J., Gosling J.T. 3‐D simulation of high‐latitude interaction regions: Comparison with Ulysses results. Geophys. Res. Lett. 1994, vol. 21, no. 18, pp. 2063–2066. DOI:https://doi.org/10.1029/94GL01581.
23. Potgieter M.S. Solar modulation of cosmic rays. Living Reviews in Solar Physics. 2013, vol. 10, pp. 1–66. DOI:https://doi.org/10.12942/lrsp-2013-3.
24. Powell K.G., Roe P.L., Linde T.J., Gombosi T.I., De Zeeuw D.L. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 1999, vol. 154, no. 2, pp. 284–309. DOI:https://doi.org/10.1006/jcph.1999.6299.
25. Richardson I.G. Solar wind stream interaction regions throughout the heliosphere. Living reviews in solar physics. 2018, vol. 15, no. 1, p. 1. DOI:https://doi.org/10.1007/s41116-017-0011-z.
26. Riley P., Linker J.A., Mikic Z., Lionello R. A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 2006, vol. 653, no. 2, p. 1510.
27. Schatten K.H. Current sheet magnetic model for the solar corona. 1971, no. X-692-71-132.
28. Schatten K.H., Wilcox J.M., Ness N.F. A model of interplanetary and coronal magnetic fields. Solar Phys. 1969, vol. 6, pp. 442–455.
29. Shen F., Yang Z., Zhang J., Wei W., Feng X. Three-dimensional MHD simulation of solar wind using a new boundary treatment: Comparison with in situ data at Earth. Astrophys. J. 2018, vol. 866, no. 1, p. 18. DOI:https://doi.org/10.3847/1538-4357/aad806.
30. Wang Y.M., Sheeley Jr N.R. Solar wind speed and coronal flux-tube expansion. Astrophys. J. 1990, vol. 355, pp. 726–732.
31. Wang Y.X., Guo X.C., Wang C., et al. MHD modeling of the background solar wind in the inner heliosphere from 0.1 to 5.5 AU: Comparison with in situ observations. Space Weather. 2020, vol. 18, no. 6, p. e2019SW002262. DOI:https://doi.org/10.1029/2019SW002262.
32. Wiengarten T., Kleimann J., Fichtner H., Kühl P., Kopp A., Heber B., Kissmann R. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code. Astrophys. J. 2014, vol. 788, no. 1, p. 80. DOI:https://doi.org/10.1088/0004-637X/788/1/80.
33. Zhu Y.J., Shen F., Luo X., Wang Y., Tang B. Solar energetic particles intensity variations associated with a tilted-dipole 3D corotating interaction region. Earth and Planetary Physics. 2024, vol. 8, no. 5, pp. 797–810. DOI:https://doi.org/10.26464/epp2024049.
34. URL: https://github.com/predsci/POT3D (accessed May 15, 2025).
35. URL: http://www.swpc.noaa.gov/products/wsa-enlil-solar-wind-prediction (accessed May 15, 2025).
36. URL: http://solarwind.entroforce.ru (accessed May 15, 2025).
37. URL: http://wso.stanford.edu/Harmonic.los/ghlist.html (accessed May 15, 2025).
38. URL: http://wso.stanford.edu/words/pfss.pdf (accessed May 15, 2025).
39. URL: http://wso.stanford.edu/Harmonic.los/CR2066 (accessed May 15, 2025).
40. URL: https://github.com/sunpy/streamtracer (accessed May 15, 2025).



