Балтийский федеральный университет имени И. Канта
Калининград, Россия
Балтийский федеральный университет имени И. Канта
Калининград, Россия
Балтийский федеральный университет имени И. Канта
Калининград, Калининградская область, Россия
УДК 551.55 Ветер и турбулентность
The paper presents the results of modeling of spatial and temporal perturbations of the thermosphere during a strong meteorological disturbance. The modeling was performed using the Global Self-Consistent Model of the thermosphere, ionosphere, and protonosphere (GSM TIP). The impact of tropospheric/stratospheric sources on the thermosphere during dissipation of acoustic and internal gravity waves, generated in the meteorological storm region, was considered in GSM TIP by specifying an additional thermal source. The results of modeling of ionospheric effects of the meteorological storm in October 2017 have shown that the action of a local additional source of heating of the thermosphere leads to perturbations of the thermosphere and ionosphere parameters both directly above the source region and at a significant distance from it. In additional heating of the thermosphere, a decrease is observed in the total electron content (TEC) values, reaching 20 % in the daytime compared to a meteorologically quiet day. To the south and east of the source region, there are positive TEC perturbations with relative amplitudes 5–10 % during the daytime. The physical processes determining the ionospheric response directly in the source region are conditioned by heating of the thermosphere and its influence on changes in the neutral composition and circulation of the neutral wind. The TEC perturbations in the regions remote from the source region are determined by dynamic processes, which lead to the eastward transport of plasma and displacement of ionospheric perturbations to low latitudes.
total electron content, thermosphere, ionosphere, acoustic waves, internal gravity waves, numerical modeling, meteorological storm
1. Artru J., Ducic V., Kanamori H., et al. Ionospheric detection of gravity waves induced by tsunamis. Geophysical Journal International. 2005, vol. 160, iss. 3, pp. 840–848. DOI:https://doi.org/10.1111/j.1365-246X.2005.02552.x.
2. Astafyeva E. Ionospheric detection of natural hazards. Rev. Geophys. 2019, vol. 57, pp. 1265–1288. DOI:https://doi.org/10.1029/2019RG000668.
3. Bessarab F.S., Koren’kov Yu.N. Effect of nitric oxide on global distributions of thermospheric and ionospheric parameters. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1998, vol. 38, no. 5, pp. 645–651. (In Russian).
4. Bishop R.L., Aponte N., Earle G.D., et al. Arecibo observations of ionospheric perturbations associated with the passage of tropical storm Odette. J. Geophys. Res. 2006, vol. 111, iss. A11, no. 320, pp. 1–9. DOI:https://doi.org/10.1029/2006JA011668.
5. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G. Meteorological effects of ionospheric disturbances from vertical radio sounding data. J. Atmos. Solar-Terr. Phys. 2015, vol. 136, pp. 235–243. DOI:https://doi.org/10.1016/j.jastp.2015.07.006.
6. Gavrilov N.M., Koval A.V., Kshevetskii S.P. Thermal effects of nonlinear acoustic-gravity waves propagating at thermospheric temperatures matching high and low solar activity. J. Atmos. Solar-Terr. Phys. 2020, vol. 208, p. 105381. DOI:https://doi.org/10.1016/j.jastp.2020.105381.
7. Hersbach H., Bell B., Berrisfordand P., et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. 2020, vol. 146, iss. 730, pp. 1999–2049. DOI:https://doi.org/10.1002/qj.3803.
8. Hickey M.P., Schubert G., Walterscheid R.L. Acoustic wave heating of the thermosphere. J. Geophys. Res. 2001, vol. 106, iss. A10, pp. 21543–21548. DOI:https://doi.org/10.1029/2001JA000036.
9. Hickey M.P., Walterscheid R.L., Schubert G. Gravity wave heating and cooling of the thermosphere: Roles of the sensible heat flux and viscous flux of kinetic energy. J. Geophys. Res. 2011, vol. 116, p. A12326. DOI:https://doi.org/10.1029/2011JA016792.
10. Karpov I.V., Vasiliev P.A. Ionospheric disturbances due to the influence of localized thermospheric sources. Geomagnetism and Aeronomy. 2020, vol. 60, no. 4, pp. 477–482. DOI:https://doi.org/10.1134/S0016793220040064.
11. Karpov I.V., Radievsky A.V., Kshevetsky S.P., et al. Disturbances of the upper atmosphere and ionosphere caused by acoustic-gravity wave sources in the lower atmosphere. Russ. J. Phys. Chem. B. 2016, vol. 10, no. 1, pp. 127–132. DOI:https://doi.org/10.1134/S199079311601005X.
12. Karpov I.V., Borchevkina O.P., Vasilev P.A. Simulation of ionospheric effects induced by meteorological storms. Russ. J. Phys. Chem. B. 2020, vol. 14, no. 2, pp. 362–366. DOI:https://doi.org/10.1134/S1990793120020220.
13. Klimenko M.V., Bryukhanov V.V., Klimenko V.V. Numerical simulation of the electric field and zonal current in the Earth's ionosphere: The dynamo field and equatorial electrojet. Geomagnetism and Aeronomy. 2006, vol. 46, no. 4, pp. 457–466. DOI:https://doi.org/10.1134/S0016793206040074.
14. Klimenko M.V., Klimenko V.V., Zakharenkova I.E., et al. Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Adv. Space Res. 2011, vol. 48, no. 3, pp. 488–499. DOI:https://doi.org/10.1016/j.asr.2011.03.040.
15. Klimenko M.V., Klimenko V.V., Zakharenkova I.E. Longitudinal variations of the ionospheric, plasmaspheric, and total electron contents in December 2009. Russ. J. Phys. Chem. B. 2016, vol. 10, pp. 100–108. DOI:https://doi.org/10.1134/S1990793116010085.
16. Korenkov Yu.N., Bessarab F.S., et al. Numerical modelling of the thermosphere-ionosphere coupling during substorm. Adv. Space Res. 1996, vol. 18, no. 3, pp. 41–44. DOI:https://doi.org/10.1016/0273-1177(95)00834-2.
17. Koucká Knížová P., Podolská K., Potužníková K., et al. Evidence of vertical coupling: Meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere. Ann. Geophys. 2020, vol. 38, pp. 73–93. DOI:https://doi.org/10.5194/angeo-38-73-2020.
18. Koucká Knížová P., Potužníková K., Podolská K., et al. Multi-instrumental observation of mesoscale tropospheric systems in July 2021 with a potential impact on ionospheric variability in midlatitudes. Frontiers in Astronomy and Space Sciences. 2023, vol. 10, no. 1197157, pp. 1–22. DOI:https://doi.org/10.3389/fspas.2023.1197157.
19. Koval A.V., Gavrilov N.M., Kandieva K.K., et al. Numerical simulation of stratospheric QBO impact on the planetary waves up to the thermosphere. Scientific Reports. 2022, vol. 12, 21701. DOI:https://doi.org/10.1038/s41598-022-26311-x.
20. Kurdyaeva Yu., Bessarab F., Borchevkina O., Klimenko M. Model study of the influence of atmospheric waves on variations of upper atmosphere and ionosphere parameters during a meteorological storm on May 29, 2017. Adv. Space Res. 2024, vol. 74, no. 5, pp. 2463–2474. DOI:https://doi.org/10.1016/j.asr.2024.05.062.
21. Lay E. H. Ionospheric irregularities and acoustic-gravity wave activity above low-latitude thunderstorms. Geophys. Res. Lett. 2018, vol. 45, pp. 90–97. DOI:https://doi.org/10.1002/2017GL076058.
22. Li W., Yue J., Yang Y., et al. Analysis of ionospheric disturbances associated with powerful cyclones in East Asia and North America. J. Atmos. Solar.-Terr. Phys. 2017, vol. 161, pp. 43–54. DOI:https://doi.org/10.1016/j.jastp.2017.06.012.
23. Namgaladze A.A, Korenkov Yu.N., Klimenko V.V., et al. Numerical modelling of the thermosphere-ionosphere-protonosphere system. J. Atmos. Terr. Phys. 1991, vol. 53, iss. 11-12, pp. 1113–1124. DOI:https://doi.org/10.1016/0021-9169(91)90060-K.
24. Pancheva D., Mukhtarov P., Smith A. Climatology of the migrating terdiurnal tide (TW3) in SABER/TIMED temperatures. J. Geophys. Res.-Space. 2013, vol. 118, pp. 1755–1767. DOI:https://doi.org/10.1002/jgra.50207.
25. Pedatella N.M., Forbes J.M. Modulation of the equatorial F-region by the quasi-16-day planetary wave. Geophys. Res. Lett. 2009, vol. 36, L09105. DOI:https://doi.org/10.1029/2009GL037809.
26. Pedatella N.M., Liu H.-L. The influence of internal atmospheric variability on the ionosphere response to a geomagnetic storm. Geophys. Res. Lett. 2018, vol. 45, pp. 4578–4585. DOI:https://doi.org/10.1029/2018GL077867.
27. Rahmani Y., Alizadeh M.M., Schuh H., et al. Probing vertical coupling effects of thunderstorms on lower ionosphere using GNSS data. Adv. Space Res. 2020, vol. 66, no. 8, pp. 1967–1976. DOI:https://doi.org/10.1016/j.asr.2020.07.018.
28. Schaer S. Mapping and predicting the Earth’s ionosphere using the global positioning system: PhD thesis. Bern, University of Bern, 1999, 205 p.
29. Strickland D.J., Evans J.S., Paxton L.J. Satellite remote sensing of thermospheric O/N2 and solar EUV. 1. Theory. J. Geophys. Res. 1995, vol. 100, no. A7, pp. 12217–12226. DOI:https://doi.org/10.1029/95JA00574.
30. Šindelárova T., Burešová D., Chum J., Hruska F. Doppler observations of infrasonic waves of meteorological origin at ionospheric heights. Adv. Space Res. 2009, vol. 43, pp. 1644–1651. DOI:https://doi.org/10.1016/j.asr.2008.08.022.
31. Yasyukevich A.S., Klimenko M.V., Kulikov Yu.Yu., et al. Changes in the middle and upper atmosphere parameters during the January 2013 sudden stratospheric warming. Sol-Terr. Phys. 2018, vol. 4, no. 4, pp. 48–58. DOI:https://doi.org/10.12737/stp-44201807.
32. Wang J.C., Tsai-Lin R., Chang L.C., et al. Modeling study of the ionospheric responses to the quasi-biennial oscillations of the Sun and stratosphere. J. Atmos. Solar-Terr. Phys. 2018, vol. 171, pp. 119–130. DOI:https://doi.org/10.1016/j.jastp.2017.07.024.
33. Yiğit E., Medvedev A.S. Internal wave coupling processes in Earth’s atmosphere. Adv. Space Res. 2015, vol. 55, iss. 4, pp. 983–1003. DOI:https://doi.org/10.1016/j.asr.2014.11.020.
34. Zakharov V.I., Kunitsyn V.E. Regional features of atmospheric manifestations of tropical cyclones according to ground-based GPS network data. Geomagnetism and Aeronomy. 2012, vol. 52, pp. 533–545. DOI:https://doi.org/10.1134/S0016793212040160.
35. URL: https://guvitimed.jhuapl.edu (accessed date April 16, 2025).
36. URL: https://rscf.ru/project/25-27-00213/ (accessed date April 16, 2025).



