Аннотация и ключевые слова
Аннотация (русский):
Обзор работ авторов посвящен фундаментальной роли неустойчивости Рэлея—Тейлора (НРТ) как триггера вспышечного энерговыделения. Исследованы два случая НРТ: вблизи оснований корональной магнитной петли и в ее вершине. В первом случае требуется предварительный нагрев хромосферной плазмы, который может быть вызван джоулевой диссипацией в частично ионизированной плазме при сопротивлении Каулинга. НРТ в вершине петли обусловлена расположенным над ней протуберанцем. Определены условия развития НРТ как триггера вспышки в этих двух случаях. Показано, что НРТ возбуждает сверхдрайсеровское электрическое поле в хромосферных основаниях петли. Этим можно объяснить громадное количество ускоренных во вспышке частиц. Неустойчивость Рэлея—Тейлора является также причиной появления быстрых (~10 c) предвестников вспышек.

Ключевые слова:
Солнце, триггер вспышек, джоулева диссипация, ускорение частиц
Список литературы

1. Андреев Г.В. Расчет сечения ионизации электронным ударом для атомов водорода и азота. Физико-химическая кинетика в газовой динамике. 2010, т. 9, с. 1–2.

2. Зайцев В.В., Степанов А.В. К природе быстрых рентгеновских предвестников солнечных вспышек. Письма в Астрономический журнал. 2025, т. 51, № 1. (В печати).

3. Мешалкина Н.С., Алтынцев А.Т. Проявления нагрева в начале вспышки 29 июня 2012. Солнечно-земная физика. 2024, т. 10, № 3, с. 13–20. DOI:https://doi.org/10.12737/szf-103202402 // Meshalkina N.S., Altyntsev A.T. Heating manifestations at the onset of the 29 June 2012 flare. Sol.-Terr. Phys. 2024, vol. 10, iss. 3. DOI:https://doi.org/10.12737/stp-103202402.

4. Степанов А.В., Зайцев В.В. Магнитосферы активных областей Солнца и звезд. М.: Физматлит, 2018, 387 с.

5. Струминский А.Б., Садовский А.М., Григорьева И.Ю. Критерии для предсказания протонных событий по солнечным наблюдениям в реальном времени. Геомагнетизм и аэрономия. 2024, т. 64, № 2, с. 163–174. DOI:https://doi.org/10.31857/S0016794024020019.

6. Alfvén H., Carlqvist P. Currents in the Solar Atmosphere and a Theory of Solar Flares. Solar Phys. 1967, vol. 1, p. 220–228. DOI:https://doi.org/10.1007/BF00150857.

7. Awasthi A.K., Jain R. Multi-wavelength diagnostics of precursor phase in solar flares. First Asia-Pacific Solar Physics Meeting. Astron. Soc. India Conf. 2011, vol. 2, pp. 297–305.

8. Battaglia A.F., Hudson H., Warmuth A., et al. The existence of hot X-ray onsets in solar flares. Astron. Astrophys. 2023, vol. 679, article number A139. DOI:https://doi.org/10.1051/0004-6361/202347706.

9. Brown J.C. On the Ionization of Hydrogen in Optical Flares. Solar Phys. 1973, vol. 29, pp. 421–427. DOI:https://doi.org/10.1007/BF00150822.

10. da Silva D. F., Hui L., Simoes P.J.A., et al. Statistical analysis of the onset temperature of solar flares in 2010–2011. Monthly Notices of the Royal Astronomical Society. 2023, vol. 525, iss. 3, pp. 4143–4148. DOI:https://doi.org/10.1093/mnras/stad2244.

11. Emslie A.G., Henoux J.-C. The electrical current structure associated with solar flare electrons accelerated by large-scale electric fields. Astrophys. J. 1995, vol. 446, p. 371. DOI:https://doi.org/10.1086/175796.

12. Fritzová-Švestková L., Švestka Z. Electron density in flares. II Results of measurement. Solar Phys. 1967, vol. 2, pp. 87–97. DOI:https://doi.org/10.1007/BF00155894.

13. Giovanelli R.G. A theory of chromospheric flares. Nature. 1946, vol. 158, pp. 81–82. DOI:https://doi.org/10.1038/158081a0.

14. Hoyng P., Brown J.C., van Beek H.F. High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite, Solar Phys. 1976, vol. 48, P.197–254. DOI:https://doi.org/10.1007/BF00151992.

15. Hudson H., Simoes P.J.A., Fletcher L., et al. Hot X-ray onsets of solar flares. Monthly Notices of the Royal Astronomical Society. 2021, vol. 501, iss. 1, pp. 1273–1281. DOI:https://doi.org/10.1093/mnras/staa3664.

16. Kane S.R., Hurley K., McTiernan J.M., et al. Energy release and dissipation during giant solar flares. Astrophys. J. Lett. 1995, vol. 446, p. L47. DOI:https://doi.org/10.1086/187927.

17. Kumar P., Srivastava A.K., Somov, B.V., et al. Evidence of solar flare triggering due to loop-loop interaction caused by footpoint shear motion. Astrophys. J. 2010, vol. 723, pp. 1651–1664. DOI:https://doi.org/10.1088/0004-637X/723/2/1651.

18. Kusano K., Bamba Y., Yamamoto T.T. Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J. 2012, vol. 760, no. 1, p. 31. DOI:https://doi.org/10.1088/0004-637X/760/1/31.

19. Ledentsov L. Thermal trigger for solar flares I: Fragmentation of the preflare current layer. Solar Phys. 2021, vol. 296, article number 74. DOI:https://doi.org/10.1007/s11207-021-01817-1.

20. Masuda S., Kosugi T., Hara H., et al. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature. 1994, vol. 371, pp. 495–497. DOI:https://doi.org/10.1038/371495a0.

21. Melrose D.B. Neutralized and Unneutralized current patterns in the solar corona. Astrophys. J. 1991, vol. 381, p. 306. DOI:https://doi.org/10.1086/170652.

22. Miller J.A., Cargill P.J., Emslie A.G., et al. Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 1997, vol. 102, pp. 14631–14659. DOI:https://doi.org/10.1029/97JA00976.

23. Pustil’nik L.A. Instability of quiescent prominences and the origin of solar flares. Soviet Astronomy. 1974, vol. 17, p. 763.

24. Sharykin I.N., Kosovichev A.G. Dynamics of electric currents, magnetic field topology, and helioseismic response of a solar flare. Astrophys. J. 2015, vol. 808, no. 1. DOI:https://doi.org/10.1088/0004-637X/808/1/72.

25. Somov B.V. Magnetic reconnection and topological trigger in physics of large solar flares. Asian J. Phys. 2008, vol. 17, no. 2-3, pp. 421–454. DOI:https://doi.org/10.48550/arXiv.0901.4697.

26. Stepanov A.V., Zaitsev V.V., Kupriyanova E.G. Features of electric current dissipation in the solar atmosphere. Geomagnetism and Aeronomy. 2024, vol. 64, pp. 1203–1214. DOI:https://doi.org/10.1134/S001679322470030.

27. Syrovatskii S.I. Current sheet characteristics and thermal trigger of solar flares. Soviet Astronomy Lett. 1976, vol. 2, p. 13.

28. Verner D.A., Ferland C.J. Atomic data for astrophysics. I. Radiative recombination rates for H-like, He-like, Li-like, and Na-like ions over a broad range of temperature. Astrophys. J. Suppl. Ser. 1996, vol. 103, no. 2, pp. 467–473. DOI:https://doi.org/10.1086/192284.

29. Veronig A., Vršnak B., Dennis B. R., et al. Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model. Astron. Astrophys. 2002, vol. 392, no. 2, pp. 699–712. DOI:https://doi.org/10.1051/0004-6361:20020947.

30. Wang H., Liu Ch., Ahn K., et al. High-resolution observations of flare precursors in the low solar atmosphere. Nature Astronomy. 2017, vol. 1, article number 0085. DOI:https://doi.org/10.1038/s41550-017-0085.

31. Zaitsev V.V. Ultrafine magnetic structures in the chromosphere. Geomagnetism and Aeronomy. 2015, vol. 55, pp. 846–849. DOI:https://doi.org/10.1134/S0016793215070294.

32. Zaitsev V.V., Stepanov A.V. Towards the circuit theory of solar flares. Solar Phys. 1992, vol. 139, pp. 343–356. DOI:https://doi.org/10.1007/BF00159158.

33. Zaitsev V.V., Urpo S., Stepanov A.V. Temporal dynamics of Joule heating and DC-electric field acceleration in single flare loop. Astron. Astrophys. 2000, vol. 357, pp. 1105–1114.

34. Zaitsev V.V., Stepanov A.V. Particle acceleration and plasma heating in the chromosphere. Solar Phys. 2015, vol. 290, pp. 3559–3572. DOI:https://doi.org/10.1007/s11207-015-0731-y.

35. Zaitsev V.V., Kronshtadtov P.V., Stepanov A.V. Rayleigh — Taylor instability and excitation of super-Dreicer electric fields in the solar chromosphere. Solar Phys. 2016, vol. 291, pp. 3451–3459. DOI:https://doi.org/10.1007/s11207-016-0983-1.

36. Zaitsev V.V., Stepanov A.V., Kronshtadtov P.V. On the possibility of heating the solar corona by heat fluxes from coronal magnetic structures. Solar Phys. 2020, vol. 295, article number 166. DOI:https://doi.org/10.1007/s11207-020-01732-x.

37. Zimovets I.V., Sharykin I.N., Gan W.Q. Relationships between photospheric vertical electric currents and hard X-ray sources in solar flares: Statistical study. Astrophys. J. 2020, vol. 891, no. 2. DOI:https://doi.org/10.3847/1538-4357/ab75be.

Войти или Создать
* Забыли пароль?