Россия
Москва, Россия
УДК 61 Медицина. Охрана здоровья
В России и мире увеличивается число случаев злокачественных новообразований и смертей от него. Поэтому важно искать новые методы лечения онкологических заболеваний. Цель исследования: изучить возможности применения апротинина и мефенаминовой кислоты для лечения злокачественных новообразований. Мы проанализировали статьи из электронных библиотек e-library.ru, cyberleninka.ru и PubMed. Выбрали наиболее значимые работы на русском и английском языках, где описаны исследования этих препаратов в онкологии. Протеазы играют важную роль в росте, развитии и распространении опухолей. Матриксные металлопротеиназы разрушают внеклеточный матрикс, что способствует росту опухоли и метастазированию. Система плазминоген-плазмин также участвует в этих процессах. Апротинин блокирует активность сериновых протеаз, включая матриксные металлопротеиназы и систему плазминоген-плазмин. Мефенаминовая кислота оказывает цитотоксическое действие на клетки злокачественных опухолей. Апротинин и мефенаминовая кислота могут быть эффективны в комплексном лечении злокачественных новообразований, особенно когда традиционные методы терапии не помогают.
злокачественные новообразования, протеазы, матриксные металлопротеиназы, система плазминоген-плазмин, апротинин, мефенаминовая кислота
1. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность) / под ред. А.Д. Каприна [и др.] − М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024. 276 с. ISBN 978-5-85502-298-8
2. Bhattacharya S. A Review on Protease Inhibitors of Herbal Origin to Combat Malignancy. J Environ Pathol Toxicol Oncol. 2024;43(3):1-11. doi:https://doi.org/10.1615/JEnvironPatholToxicolOncol.2024052872.
3. Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi MA, Daraee H, Daraee N, Eatemadi R, Sadroddiny E. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother. 2017 Feb;86:221-231. doi:https://doi.org/10.1016/j.biopha.2016.12.021.
4. Yang P, Li ZY, Li HQ. Potential Roles of Protease Inhibitors in Cancer Progression. Asian Pac J Cancer Prev. 2015;16(18):8047-52. doi:https://doi.org/10.7314/apjcp.2015.16.18.8047.
5. Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA Jr. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. Drug Des Devel Ther. 2021 Jan 6;15:9-20. doi:https://doi.org/10.2147/DDDT.S285852.
6. Maurya S, Prasad D, Mukherjee S. Matrix Metalloproteinases in Oral Cancer Pathogenesis and their Use in Therapy. Anticancer Agents Med Chem. 2024;24(1):3-17. doi:https://doi.org/10.2174/0118715206270002231108071917.
7. Niland S, Riscanevo AX, Eble JA. Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci. 2021 Dec 23;23(1):146. doi:https://doi.org/10.3390/ijms23010146.
8. Wolosowicz M, Prokopiuk S, Kaminski TW. The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease. Int J Mol Sci. 2024 Dec 21;25(24):13691. doi:https://doi.org/10.3390/ijms252413691.
9. He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol. 2023 Jan 19;13:1093990. doi:https://doi.org/10.3389/fimmu.2022.1093990.
10. Almutairi S, Kalloush HM, Manoon NA, Bardaweel SK. Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013-2023). Molecules. 2023 Jul 21;28(14):5567. doi:https://doi.org/10.3390/molecules28145567.
11. Jin S, Wang J, Wang K. A Comprehensive Analysis of the Clinical Significance and Underlying Oncogenic Roles of Specific MMPs in Gastric Carcinoma Reveals their Potential Roles in Prognosis and Therapy. Curr Mol Med. 2025 Jan 3. doi:https://doi.org/10.2174/0115665240309837241204184939.
12. Roskovicova V, Katuchova J, Vecurkovska I, Maslankova J, Marekova M, Radonak J, Katuch V. MMP9 and pancreatic cancer. Bratisl Lek Listy. 2024;125(11):724-727. doi:https://doi.org/10.4149/BLL_2024_110.
13. Wang Y, Wei Y, Huang J, Li X, You D, Wang L, Ma X. Prognostic value of matrix metalloproteinase-2 protein and matrix metalloproteinase-9 protein in colorectal cancer: a meta-analysis. BMC Cancer. 2024 Aug 29;24(1):1065. doi:https://doi.org/10.1186/s12885-024-12775-9.
14. Pan C, Dai J, Wei Y, Yang L, Ding Z, Wang X, He J. Matrix Metalloproteinase 11 Promotes Migration and Invasion of Colorectal Cancer by Elevating Slug Protein. Int J Med Sci. 2024 Aug 13;21(11):2170-2188. doi:https://doi.org/10.7150/ijms.98007.
15. Lazar AM, Costea DO, Popp CG, Mastalier B. Skin Malignant Melanoma and Matrix Metalloproteinases: Promising Links to Efficient Therapies. Int J Mol Sci. 2024 Jul 17;25(14):7804. doi:https://doi.org/10.3390/ijms25147804.
16. Mastalier Manolescu BS, Lazar AM, Ţiplica GS, Zurac SA, Reboşapcă A, Andreescu B, Popp CG. MMP1, MMP9, MMP11 and MMP13 in melanoma and its metastasis - key points in understanding the mechanisms and celerity of tumor dissemination. Rom J Morphol Embryol. 2024 Jan-Mar;65(1):45-52. doi:https://doi.org/10.47162/RJME.65.1.06.
17. Romanowicz A, Lukaszewicz-Zajac M, Mroczko B. Exploring Potential Biomarkers in Oesophageal Cancer: A Comprehensive Analysis. Int J Mol Sci. 2024 Apr 11;25(8):4253. doi:https://doi.org/10.3390/ijms25084253.
18. Wang X, Li C, Lou L, Zhu H. Roles of Matrix Metalloproteinases 2 and 9 in Uterine Leiomyosarcoma. Anticancer Res. 2024 Apr;44(4):1465-1473. doi:https://doi.org/10.21873/anticanres.16942.
19. Fouad FA, Khali MA, Moaz I, Elmasry H, Gheta N, Abdeen A, Tantawi M, Elkholy G, Rihan S, Kamel MM, El-Kenawy AE, Abdel-Moneim YA, Gameel AM. Prognostic impact of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) in Egyptian breast cancer patients. Int J Immunopathol Pharmacol. 2024 Jan-Dec;38:3946320241304911. doi:https://doi.org/10.1177/03946320241304911.
20. Zheng X, Xie X, Wang W, Wang L, Tan B. Silencing of matrix metalloprotease-12 delays the progression of castration-resistant prostate cancer by regulating autophagy and lipolysis. Braz J Med Biol Res. 2024 Mar 18;57:e13351. doi:https://doi.org/10.1590/1414-431X2024e13351.
21. Pinheiro LCL, Pereira ÉR, Francelino AL, Guembarovski AFML, Fuganti PE, de Oliveira KB, Miqueloto CA, Serpeloni JM, Guembarovski RL. Metalloproteinase 9 immunostaining profile is positively correlated with tumor grade, extraprostatic extension and biochemical recurrence in prostate cancer. Pathol Res Pract. 2024 Jan;253:155024. doi:https://doi.org/10.1016/j.prp.2023.155024.
22. Młynarczyk G, Tokarzewicz A, Gudowska-Sawczuk M, Mroczko B, Novák V, Novák A, Mitura P, Romanowicz L. MMP-14 Exhibits Greater Expression, Content and Activity Compared to MMP-15 in Human Renal Carcinoma. Int J Mol Sci. 2024 Jul 25;25(15):8107. doi:https://doi.org/10.3390/ijms25158107.
23. Zhang X, Hong B, Li H, Zhao J, Li M, Wei D, Wang Y, Zhang N. Basement membrane-related MMP14 predicts poor prognosis and response to immunotherapy in bladder cancer. BMC Cancer. 2024 Jun 19;24(1):746. doi:https://doi.org/10.1186/s12885-024-12489-y.
24. Saini J, Bakshi J, Panda NK, Sharma M, Yadav AK, Kamboj K, Goyal AK. Serum Concentration of MMP-9 as a Predictive Biomarker for the Progression of Oral Cancer. J Maxillofac Oral Surg. 2024 Oct;23(5):1079-1088. doi:https://doi.org/10.1007/s12663-023-01932-5.
25. Wu Z, Yang Y, Chen M, Zha Y. Matrix metalloproteinase 9 expression and glioblastoma survival prediction using machine learning on digital pathological images. Sci Rep. 2024 Jul 2;14(1):15065. doi:https://doi.org/10.1038/s41598-024-66105-x.
26. Kwaan HC, McMahon B. The role of plasminogen-plasmin system in cancer. Cancer Treat Res. 2009;148:43-66. doi:https://doi.org/10.1007/978-0-387-79962-9_4.
27. Didiasova M, Wujak L, Wygrecka M, Zakrzewicz D. From plasminogen to plasmin: role of plasminogen receptors in human cancer. Int J Mol Sci. 2014 Nov 17;15(11):21229-52. doi:https://doi.org/10.3390/ijms151121229.
28. Ismail AA, Shaker BT, Bajou K. The Plasminogen-Activator Plasmin System in Physiological and Pathophysiological Angiogenesis. Int J Mol Sci. 2021 Dec 29;23(1):337. doi:https://doi.org/10.3390/ijms23010337.
29. Soleyman-Jahi S, Sadeghi F, Afshari Z, Barati T, Ghasemi S, Muhammadnejad S, Amanpour S, Zendehdel K. Anti-neoplastic effects of aprotinin on human breast cancer cell lines: In vitro study. Adv Clin Exp Med. 2019 Feb;28(2):151-157. doi:https://doi.org/10.17219/acem/89770.
30. Abramić M, Agić D. Survey of Dipeptidyl Peptidase III Inhibitors: From Small Molecules of Microbial or Synthetic Origin to Aprotinin. Molecules. 2022 May 7;27(9):3006. doi:https://doi.org/10.3390/molecules27093006.
31. Nazir F, Munir I, Yesiloz G. A Microfluidics-Assisted Double-Barreled Nanobioconjugate Synthesis Introducing Aprotinin as a New Moonlight Nanocarrier Protein: Tested toward Physiologically Relevant 3D-Spheroid Models. ACS Appl Mater Interfaces. 2024 Apr 17;16(15):18311-18326. doi:https://doi.org/10.1021/acsami.3c16548.
32. Mikhalkin IA, Iashvili ZG, Bykov VL. Thermoradiotherapy combined with a proteolysis inhibitor (contrical) in the treatment of head and neck cancer. Oncology. 1993 Sep-Oct;50(5):344-7. doi:https://doi.org/10.1159/000227207.
33. Hosseinimehr SJ, Safavi Z, Kangarani Farahani S, Noaparst Z, Ghasemi A, Asgarian-Omran H. The synergistic effect of mefenamic acid with ionizing radiation in colon cancer. J Bioenerg Biomembr. 2019 Jun;51(3):249-257. doi:https://doi.org/10.1007/s10863-019-09792-w.
34. Seyyedi R, Talebpour Amiri F, Farzipour S, Mihandoust E, Hosseinimehr SJ. Mefenamic acid as a promising therapeutic medicine against colon cancer in tumor-bearing mice. Med Oncol. 2022 Jan 4;39(2):18. doi:https://doi.org/10.1007/s12032-021-01618-3.
35. Woo DH, Han IS, Jung G. Mefenamic acid-induced apoptosis in human liver cancer cell-lines through caspase-3 pathway. Life Sci. 2004 Oct 1;75(20):2439-49. doi:https://doi.org/10.1016/j.lfs.2004.04.042.
36. Hashemipour MA, Mehrabizadeh Honarmand H, Falsafi F, Tahmasebi Arashlo M, Rajabalian S, Gandjalikhan Nassab SA. In Vitro Cytotoxic Effects of Celecoxib, Mefenamic Acid, Aspirin and Indometacin on Several Cells Lines. J Dent (Shiraz). 2016 Sep;17(3):219-25. PMID: 27602398
37. Ye J, Chang T, Zhang X, Wei D, Wang Y. Mefenamic acid exhibits antitumor activity against osteosarcoma by impeding cell growth and prompting apoptosis in human osteosarcoma cells and xenograft mice model. Chem Biol Interact. 2024 Apr 25;393:110931. doi:https://doi.org/10.1016/j.cbi.2024.110931. PMID: 38423378
38. Weiss H, Amberger A, Widschwendter M, Margreiter R, Ofner D, Dietl P. Inhibition of store-operated calcium entry contributes to the anti-proliferative effect of non-steroidal anti-inflammatory drugs in human colon cancer cells. Int J Cancer. 2001 Jun 15;92(6):877-82. doi:https://doi.org/10.1002/ijc.1280.
39. Shiiba M, Yamagami H, Yamamoto A, Minakawa Y, Okamoto A, Kasamatsu A, Sakamoto Y, Uzawa K, Takiguchi Y, Tanzawa H. Mefenamic acid enhances anticancer drug sensitivity via inhibition of aldo-keto reductase 1C enzyme activity. Oncol Rep. 2017 Apr;37(4):2025-2032. doi:https://doi.org/10.3892/or.2017.5480.
40. Yazdani F, Mottaghi-Dastjerdi N, Shahbazi B, Ahmadi K, Ghorbani A, Soltany-Rezaee-Rad M, Montazeri H, Khoshdel F, Guzzi PH. Identification of key genes and pathways involved in T-DM1-resistance in OE-19 esophageal cancer cells through bioinformatics analysis. Heliyon. 2024 Sep 6;10(18):e37451. doi:https://doi.org/10.1016/j.heliyon.2024.e37451.
41. Guzman-Esquivel J, Mendoza-Hernandez MA, Tiburcio-Jimenez D, Avila-Zamora ON, Delgado-Enciso J, De-Leon-Zaragoza L, Casarez-Price JC, Rodriguez-Sanchez IP, Martinez-Fierro ML, Meza-Robles C, Barocio-Acosta A, Baltazar-Rodriguez LM, Zaizar-Fregoso SA, Plata-Florenzano JE, Delgado-Enciso I. Decreased biochemical progression in patients with castration-resistant prostate cancer using a novel mefenamic acid anti-inflammatory therapy: A randomized controlled trial. Oncol Lett. 2020 Jun;19(6):4151-4160. doi:https://doi.org/10.3892/ol.2020.11509.
42. Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem. 2001 Mar;76(6):1895-904. doi:https://doi.org/10.1046/j.1471-4159.2001.00205.x.
43. Melnikov V, Tiburcio-Jimenez D, Mendoza-Hernandez MA, Delgado-Enciso J, De-Leon-Zaragoza L, Guzman-Esquivel J, Rodriguez-Sanchez IP, Martinez-Fierro ML, Lara-Esqueda A, Delgado-Enciso OG, Jacinto-Cortes I, Zaizar-Fregoso SA, Paz-Michel BA, Murillo-Zamora E, Delgado-Enciso I, Galvan-Salazar HR. Improve cognitive impairment using mefenamic acid non-steroidal anti-inflammatory therapy: additional beneficial effect found in a controlled clinical trial for prostate cancer therapy. Am J Transl Res. 2021 May 15;13(5):4535-4543.
44. Castillo-Rodríguez IO, Pedro-Hernandez LD, Ramírez-Ápan T, Martínez-García M. Anticancer Activity of 3,5-Bis(dodecyloxy)Benzoate-PAMAM Conjugates with Indomethacin or Mefenamic Acid. Med Chem. 2023;19(5):460-467. doi:https://doi.org/10.2174/1573406419666221226095440.
45. Клячкин Б.М., Клячкина К.Б. Новые подходы к вопросам иммунологии рака. Кемерово: Кемер. кн. изд-во, 2004. - 63 с.
46. Klyachkin B.M., Klyachkina K.B. New approaches to issues of cancer immunology. Kemerovo: Kemerovo Book Publishing House, 2004. - 63 p. (In Russ.)



