THE CONCEPT OF DEVELOPING STUDENTS' MATHEMATICAL ABILITIES
Abstract and keywords
Abstract (English):
The issue of developing abilities, especially mathematical abilities of students is not new, but remains relevant today. Typically, emphasis is placed on specific questions. Experience shows that a holistic approach is essential for effectively addressing the development of mathematical abilities of students. The teacher’s task (including through the application of various discursive practices), particularly that of the mathematics teacher, is to identify a child’s potential and create a model for developing their mathematical abilities. Mathematics, as an exact science, also supports the study of other fields, including humanities and natural sciences. Therefore, developing mathematical abilities is crucial for learners’ full functioning in modern society. Against this background, a structural-level model for developing mathematical abilities has been created.

Keywords:
development, mathematical abilities of students, discursive practices, content, levels and components of the criterion, model
References

1. Bodalev A. A. O napravleniyah i zadachah nauchnoy razrabotki problemy sposobnostey // Voprosy psihologii. 1984. № 1. S. 119-124.

2. Borytko N. M. Teoriya obucheniya: uchebnik dlya studentov pedagogicheskih vuzov. Volgograd : Izd-vo VGIPKRO. 2006. 72 s.

3. Visitaeva M. B. Ocenka razvitiya matematicheskih sposobnostey shkol'nikov // Pedagogika. 2014. № 4. S. 53-57. EDN: TFPIYD

4. Gal'perin P. Ya. Metody obucheniya i umstvennoe razvitie rebenka. M.: MGU, 1985. 45 s.

5. Gusev V. A. Psihologo-pedagogicheskie osnovy obucheniya matematike. M.: Izdat. centr «Akademiya», 2003. 432 s. EDN: https://elibrary.ru/QTKORN

6. Zagvyazinskiy V.I. Teoriya obucheniya: Sovremennaya interpretaciya: M.: Izdat. centr «Akademiya», 2001. 192 s.

7. Il'in V. S. Formirovanie lichnosti shkol'nika: celostnyy process. M.: Pedagogika, 1984. 144 s.

8. Kruteckiy V. A. Psihologiya matematicheskih sposobnostey shkol'nikov. M.: Prosveschenie, 1968. 431 s.

9. Koncepciya obschenacional'noy sistemy vyyavleniya i razvitiya molodyh talantov (utv. Prezidentom RF 03.04.2012 N Pr-827) [Elektronnyy resurs] WWW.consultant.ru (data obrascheniya 11.02. 2022).

10. Koncepciya razvitiya matematicheskogo obrazovaniya v Rossiyskoy Federacii (Rasporyazhenie pravitel'stva RF № 2506-r ot 24.12.13 g.). [Elektronnyy resurs] // WWW.garant.ru (data obrascheniya 13.02. 2022).

11. Metel'skiy N. V. Psihologo-pedagogicheskie osnovy matematiki. Minsk: Vysheyshaya shkola, 1977. 160 s.

12. Rodionov M. A. Motivaciya ucheniya matematike i puti ee formirovaniya: monografiya. Saransk: Povolzhsk. otd. RAO. Mord. gos. ped. in-t, 2001. 252 s. EDN: https://elibrary.ru/YVYOCO

13. Rubinshteyn S. L. Osnovy obschey psihologii: v 2-h t. / Akad. ped. nauk SSSR. M. : Pedagogika. T. 2 / 1989. 322 s. EDN: https://elibrary.ru/YWVSOJ

14. Sarancev G. I. Metodika obucheniya matematike: uchebnoe posobie dlya vuzov «Pedagogicheskoe obrazovanie». Kazan': Centr innovacionnyh tehnologiy, 2012. 292 s.

15. Sergeev N. K. Nepreryvnoe pedagogicheskoe obrazovanie: koncepciya i tehnologii uchebno-nauchno-pedagogicheskih kompleksov: (Voprosy teorii): monografiya. SPb. Volgograd : Peremena, 1997. 66 s. EDN: https://elibrary.ru/RRVECN

16. Serikov V. V. Formirovanie u uchaschihsya gotovnosti k trudu (Pedagogicheskaya nauka reforme shkoly: monografiya. M.: Pedagogika, 1988. 192 s.

17. Testov V. A. Princip prirodosoobraznosti i ego primenenie v metodike obucheniya matematike. [Elektronnyy resurs] // Koncept. 2020. № 1. 135 s. DOIhttps://doi.org/10.24411/2304-120X-2020-11001 URL: www.dx.doi.org/10.24411/2304-120X-2020-11001 (data obrascheniya: 07.05.2024) EDN: https://elibrary.ru/XICVSZ

18. Yakimanskaya I. S. Psihologicheskie osnovy matematicheskogo obrazovaniya. M.: Izdatel'skiy centr «Akademiya», 2004. 320 s. EDN: https://elibrary.ru/QTWZLV

19. Marks R. Primary pupils’ perceptions of mathematical ability. Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (CERME 9), Charles University in Prague, Faculty of Education; ERME, Feb 2015, Prague, Czech Republic. pp.1610-1616.  hal-01287915

20. Neville J, M. A. Leeson. Teaching creative mathematics in the primary school. Mc GRAW-HILL BOOK COMPANY. Sydney, 1970. 197 p.

21. Visitaeva M. B. The multilingual teaching of mathematics. The 6th International Conference «Function Spaces. Differential Operators. Problems of Mathematical Education», dedicated to the centennial anniversary of the corresponding member of Russian Academy of Sciences, academician of European Academy of Sciences L.D. Kudryavtsev: Abstracts (Moscow, 14-19 of November 2023), Moscow, 2023, p. 24. EDN: https://elibrary.ru/EUEXMB

22. Visitaeva M. B. Towards a multilingual education of mathematics. Mezhdunarodnaya nauchno-prakticheskaya konferenciya «Sovremennye issledovaniya i otkrytiya. Nauchnye chteniya» (posvyaschennaya 70-letiyu so dnya rozhdeniya uchenogo, organizatora i prepodavatelya K. D. Kurbanmagomedova) : tezisy dokladov (Mahachkala, 17-18 maya 2024), Mahachkala, 2024, S. 147-151. EDN: https://elibrary.ru/XVWGPY

Login or Create
* Forgot password?