Russian Federation
Khanty-Mansiysk (Yugorskaya) regional public organisation of the Free Economic Society of Russia (Deputy head)
Surgut, Russian Federation
The article considers the possibility of using tools that assess the emotional state of personnel and conduct emotional analysis of personnel during job interviews. The results of recent studies of this technology are considered. A process model for implementing the "emotional analysis" technology during interviews has been developed. An original mechanism for implementing the "emotional analysis" technology in the personnel selection process has been developed, which takes into account the influence of external and internal factors of the organization on the integration of this technology. Some results of the author's study of the relevance of the emotional analysis technology in recruitment are presented. In the article, the authors conducted a comparative analysis of analogs of the "emotional analysis" technology (acoustic speech analysis and polygraph), presented the characteristics of these technologies, considered their advantages and disadvantages.
emotional analysis during interviews, emotional analysis tools, advantages of emotional analysis, original mechanism for implementing the "emotional analysis" technology, process model for implementing the "emotional analysis" technology during interviews
1. Aleynikov, S. A. Metod emocional'nogo prognozirovaniya v onlayn sobesedovanii / S. A. Aleynikov, S. A. Sorokina, A. I. Oficerov; Ekonomika. Informatika. – Sankt-Peterburg: Nacional'nyy issledovatel'skiy universitet ITMO, 2021. – T48. – №1. – S. 178-187.
2. Lisenkova, O. A. Metody analiza emocional'nogo soderzhaniya teksta / O. A. Lisenkova, T. N. Sineokova // Yurislingvistika. – 2008. – № 9. – S. 409-416. – EDN WCMFSF.
3. Ren, R. Emocional'nyy analiz teksta dlya kross-mediynogo napisaniya teksta v kontekste bol'shih dannyh = Emotion Analysis of Cross-Media Writing Text in the Context of Big Data / R. Ren; Kolledzh pedagogicheskogo obrazovaniya, Vostochno-Kitayskiy pedagogicheskiy universitet. – Shanhay, 2022.
4. Chuang L., Yan E. B., Jing H. T., Zhi W. K. Z. Current methods of acoustic analysis of voice: a review, 2022, vol.36, no 12, p. 966-970;976. DOI:https://doi.org/10.13201/j.issn.2096-7993.2022.12.016.
5. Monahova, A. P. Kommunikativnye bar'ery / A. P. Monahova. – Tekst: elektronnyy // Medicinskiy zhurnal «Teledoctor24». – 2023. – URL: https://teledoctor24.ru/article/501-05-kommunikativnye-barery/ (data obrascheniya: 30.04.2024).
6. Sapanov, A. M. Faktory, vliyayuschie na kachestvo peredachi rechi v IP-telefonii / A. M. Sapanov, U. A. Eraly. – Tekst: elektronnyy // Molodoy uchenyy. – 2021. - №13(355). – S. 38-42. – URL: https://moluch.ru/archive/355/79399/ (data obrascheniya: 28.04.2024). EDN: https://elibrary.ru/QBGUEI
7. Lustick H., Yang X., Hakouz A. The Role of Emotions in Qualitative Analysis: Researchers’ Perspectives. The Qualitative Report, 2024, vol 29, no 4, p. 1103-1124. DOIhttps://doi.org/10.46743/2160-3715/2024.6232. EDN: https://elibrary.ru/DRBOIZ
8. Sayar A., Bozkan T., Cakar T., Ertugrul S. Emotional Analysis of Candidates During Online Interviews. The Qualitative Report, 2023, vol 72, p.100-110. DOI:https://doi.org/10.54941/ahfe1003278.
9. Koval', S. Vse o serverah: vidy, tipy, harakteristiki, vybor i nastroyki / S. Koval'. – Tekst: elektronnyy // AND-Systems: [sayt]. – 2019. – 30 okt. – URL: https://andpro.ru/blog/server/all_about_servers/ (data obrascheniya: 01.05.2024).
10. Gruppetta, S. Obrabotka izobrazheniy s pomosch'yu biblioteki Python Pillow / S. Gruppetta. – Tekst: elektronnyy // Harbr. Soobschestvo IT-specialistov: [sayt]. – 2022. – 7 avg. – URL: https://habr.com/ru/articles/681248/ (data obrascheniya: 01.05.2024).
11. Sevast'yanova, L. Biometricheskaya autentifikaciya / L. Sevast'yanova. – Tekst: elektronnyy // «Solar»: [sayt]. – 2023. – 31 avg. – URL: https://rt-solar.ru/events/blog/3616/#:~:text=Raspoznavanie%20lica%20–%20eto%20metod,hranyascheysya%20v%20baze%20etalonnoy%20model'yu (data obrascheniya: 01.05.2024).
12. DeepFace: A Popular Open Source Facial Recognition Library, 2024. URL:https://viso.ai/computer-vision/deepface/.
13. QlikView vs Qlik Sense vs FineReport: luchshiy BI-instrument 2023 goda / BI Consult: [sayt]. – 2023. – URL: https://datafinder.ru/products/qlikview-vs-qlik-sense-vs-finereport-luchshiy-bi-instrument-2023-goda (data obrascheniya: 01.05.2024).