SIMULATION MODEL OF A FLOW TUBE REACTOR
Abstract and keywords
Abstract (English):
Tubular reactors are the main type of equipment in many production processes. At the same time, their characteristics largely determine the production technical and economic indicators. Therefore, the design and development of more advanced reactor designs and the determination of effective operating parameters can be considered important research tasks. To solve them, it is necessary to use mathematical and computer modeling methods. However, models containing rather crude simplifying as-sumptions are used to analyze the processes occurring in the chemical environment. Therefore, such models can be considered insufficiently adequate. In addition, existing approaches to reactor modeling do not fully take into account the influence of stochastic factors on the process. This article describes a simulation approach to modeling an electrochemical ozone synthesis reactor. A discrete stochastic approach is used as a methodological basis. It is based on the study of the functioning of individual elements of the system, which, as a result, shape the behavior of the system as a whole. The approach takes into account the influence of both deter-ministic and random factors on the course of the process. The paper describes the algorithm of simulation computer modeling, provides the results of simulation modeling, as a sepa-rate stage of the synthesis, and the process as a whole. The results of comparing computer simulation data with experimental data conducted on a real laboratory installation are described. Conclusions are drawn about the adequacy of the proposed simulation model, about the possibilities of its application in research practice, and the merits and disadvantages of the de-scribed approach are noted

Keywords:
Simulation modeling; random processes; discrete models; ozone electrosynthesis
References

1. Kutepov A. M., Bondareva T. I., Berengarten M. G. Ob-schaya himicheskaya tehnologiya. M.: Lenand, 2022. 512 s.

2. Gumerov A. M. Matematicheskoe modelirovanie hi-miko-tehnologicheskih processov. Sankt-Peterburg : Lan', 2022. 176 s.

3. Leon J.F., Giancola F., Boccolucci A., Neroni M. A demand modelling pipeline for an agent-based traffic simulation of the city of Barcelona // Proceedings of the 2023 Winter Simulation Conference C.G. Corlu, S.R. Hunter, H. Lam, B.S. Onggo, J. Shortle, and B. Biller, eds. December 10-13, 2023. San Antonio, Texas, USA. P.1771-1782.

4. Khalil H., Wainer G., Dunnigan Z. Cell-DEVS models for CO2 sensors locations in closed spaces // Proceedings of the 2020 Winter Simulation Conference. December 13-16, 2020. Orlando, Florida, USA. pp. 692-703.

5. Li J., Giabbanelli P.J., Koster T. Comparing the effect of code optimizations on simulation runtime across synchro-nous cellular automata models. // Proceedings of the 2021 Winter Simulation Conference. December 12-15, 2021. Phoenix, Arizona, USA. pp..421-428.

6. Moskon M., Komac R., Zimic N., Mraz M. Distributed biological computation: from oscillators, logic gates and switches to a multicellular processor and neural computing applications // Neural Computing and Applications, 2021, Vol. 33, Issue 1.pp. 8923–8938.

7. Bandman O.L. Kletochno-avtomatnye modeli estestven-nyh processov i ih realizaciya na sovremennyh komp'yuterah // Prikladnaya diskretnaya matematika, 2017. № 35. S. 102-121.

8. Ershov N.M., Kravchuk A.V. Diskretnoe modelirovanie s pomosch'yu stohasticheskih kletochnyh avtomatov // Vestnik Rossiyskogo universiteta druzhby narodov: Seriya Matematika, informatika, fizika, Izd-vo RUDN (M.) 2014. № 2, S. 359-362

9. Tsompanas M.A., Fyrigos I.A., Ntinas V., Adamatzky A. Cellular automata implementation of Oregonator simulating light-sensitive Belousov–Zhabotinsky medium // Non-linear Dynamics, 2021, Vol. 104, Issue 3, pp. 4103–4115.

10. Nguyen-Tuan-Thanh Le. Multi-agent reinforcement learning for traffic congestion on one-way multi-lane highways // Journal of Information and Telecommunication, 2023, Vol. 7, Issue 3, pp. 1-15.

11. Datta S., Rokade S., Rajput S. P. Unsignalized intersection capacity estimation through traffic rule re-adjustments using agent-based cellular automata simulations // Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022 Vol. 46, Issue 3, pp. 1-27.

12. Liu X., Hu Z., Deng X., Kuhlman C.J. A calibration model for bot-like behaviors in agent-based anagram game simulation // Proceedings of the 2023 Winter Simulation Conference. December 10-13, 2023. San Antonio, Texas, USA. pp..221-232.

13. Vasiliev D.I., Gasanov E.E., Kudryavtsev V.B. On stabilization of an automaton model of migration processes // Discrete Mathematics and Applications, izdatel'stvo de Gruyter (Germany), 2020, Vol. 30, N2, pp. 117-128/

14. Malmygin G.A., Ershov N.M. Modelirovanie himicheskih reakciy s ispol'zovaniem kletochnyh avtomatov // Elektronnyy zhurnal «Sistemnyy analiz v nauke i obrazovanii», 2023, tom 3, s. 1-12

15. Bobkov S. P. Use of Discrete Approaches for Simulation the Basic Processes of Chemical Technology. Russian Journal of General Chemistry, 2021, Vol. 91, No. 6, pp. 1190–1197 DOIhttps://doi.org/10.1134/S1070363221080181

16. Astrahanceva I.A., Bobkov S.P. Diskretnaya stohasticheskaya model' gidrodinamiki potoka. Modelirovanie sistem i processov. – 2023. – №. 2. – s. 7-14. DOI:https://doi.org/10.12737/2219-0767-2023-16-2-7-14

17. Bobkov S.P., Astrahanceva I.A. Ispol'zovanie veroyatnostnyh kletochnyh avtomatov dlya modelirovaniya techeniya zhidkosti. Sovremennye naukoemkie tehnologii. Regional'noe prilozhenie, 2022, №2(70) s.47- 54. DOIhttps://doi.org/10.6060/snt.20216703.0008

18. L. Saidiaa. Issledovanie fiziko-himicheskih svoystv impul'snogo razryada v smesi CO2 - O2 / L. Saidiaa, A. Belasria, [i dr.] Fizika plazmy, 2019, t. 45, № 5, s. 465–480

Login or Create
* Forgot password?