Moscow, Russian Federation
from 01.01.2023 until now
Voronezh, Russian Federation
UDK 004.021 Алгоритмы
At the moment, research on forecasting and modeling of emergencies and the phenomena accompanying their occurrence is relevant. The causes of dangerous situations are, among other things, natural phenomena. One of these phenomena is a tropical cyclone, which is capable of causing gale force winds, tornadoes and high-intensity precipitation. The study was conducted using the example of tropical cyclone Milton, which formed from October 5 to October 10, 2024 and caused a wide public response. It should be noted that a tropical cyclone formed on October 5, 2024 in the Gulf of Mexico and broke up in the Atlantic Ocean on October 10, 2024. At the same time, residents of the US state of Florida fell under the brunt of the dangerous phenomenon, and the main causes of destruction and casualties among the population were the tornadoes accompanying the typhoon and strong winds. The analysis of the full dynamics of a tropical cyclone was performed in order to identify characteristic structural areas using an almost periodic analysis apparatus. The characteristic almost periodic values of tropical cyclone zones are revealed, and, based on a detailed analysis, the factors for further research and the possibility of improving the results obtained from the almost periodic analysis of satellite data with tropical cyclones are outlined
Near period, data analysis, image processing, technosphere safety, emergency, natural phenomena, typhoons, tropical cyclones, Milton
1. Peduzzi P., Chatenoux B., Dao H., De Bono A., Herold C., Kossin J. Global trends in tropical cyclone risk // Nat. Clim. Change. – 2012. – №2 (4). – P. 289-294.
2. Miró Ò., Benito-Lozano M., Lopez-Ayala P., Gil V., Lopez-Ayala P., Mueller C., Traveria L., López-Hernández M.de los A., Yufera-Sanchez A., Strebel I., Rodríguez S., Llorens P., Espinosa B., Jacob J., Tost J., Alquézar-Arbé A., Burillo-Putze G. Influence of Meteorological Temperature and Pressure on the Severity of Heart Failure Decompensations // J. gen. intern. med. 2023. V. 38. P. 600-609. https://doi.org/10.1007/s11606-022-07743-7.
3. Varela-Lasheras I. The effects of weather and mobility on respiratory viruses dynamics before and during the COVID-19 pandemic in the USA and Canada // PLOS Digital Health. 2023. V. 2. №. 12. e0000405. https://doi.org/10.1371/journal.pdig.0000405.
4. Baskakov A.G., Krishtal I.A., Uskova N.B. On the spectral analysis of a differential operator with an involution and general boundary conditions // Eurasian Mathematical Journal. 2020. T. 11. № 2. S. 30-39. https://doi.org/10.32523/2077-9879-2020-11-2-30-39.
5. Jin H., Li M., Hopwood G., Hochman Z., Bakar K Sh. Improving early-season wheat yield forecasts driven by probabilistic seasonal climate forecasts // Agricultural and Forest Meteorology, 2022. V. 315. 108832. https://doi.org/10.1016/j.agrformet.2022.108832.
6. Brown J.N., Hochman Z., Holzworth D., Horan H. Seasonal climate forecasts provide more definitive and accurate crop yield predictions // Agric. For. Meteorol., 2018. V. 260-261. P. 247-254. https://doi.org/10.1016/j.agrformet.2018.06.001.
7. Cannon A.J. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables // Clim. Dynam., 2018. V. 50 (1-2). P. 31-49. https://doi.org/10.1007/s00382-017-3580-6.
8. Cantelaube P., Terres J.M. Seasonal weather forecasts for crop yield modelling in Europe // Tellus Series A: Dynamic Meteorology and Oceanography. 2005. V. 57 (3). P. 476-487. https://doi.org/10.1111/j.1600-0870.2005.00125.x
9. Bauer P., Thorpe A., Brunet G. The quiet revolution of numerical weather prediction // Nature. – 2015. – V. 525 (7567). – P. 47-55.
10. Geiger T., Frieler K., Bresch D. A global historical data set of tropical cyclone exposure (tropical cycloneE-DAT) // Earth Syst Sci Data. – 2018. – V.10. – P. 185-194.
11. Chen J.-H., Lin S.-J., Zhou L., Chen X., Rees S., Bender M. Evaluation of tropical cyclone forecasts in the next generation global prediction system // Mon. Weather Rev. – 2019. – 147(9). – P. 3409-3428.
12. Easterling D.R. , Meehl G.A. , C. Parmesan, S.A. Changnon, T.R. Karl, L.O. Mearns Climate extremes: observations, modeling, and impacts // Science. – 2000. – V. 289 (5487). – P. 2068-2074.
13. Volkov, Yu. A., Peregudin S. I., Scherbakova N. L. O chislennom modelirovanii v zadachah volnovoy dinamiki // Special'naya tehnika i tehnologii transporta. – 2022. – № 15. – S. 308-317.
14. Akimov V. A., Bedilo M. V., Shishkov Yu. A., Ivanova E. O., Rostovcev D. I., Serikov V. V. Modelirovanie chrezvychaynyh situaciy prirodnogo i tehnogennogo haraktera – Moskva: Vserossiyskiy nauchno-issledovatel'skiy institut po problemam grazhdanskoy oborony i chrezvychaynyh situaciy MChS Rossii, 2023. – 144 s. – ISBN 978-5-93970-306-2.
15. Mizernaya A. A., Kobeleva N. N. Razrabotka prognoznoy matematicheskoy modeli dlya izucheniya deformaciy zdaniy i sooruzheniy na yazyke programmirovaniya Python // Interekspo Geo-Sibir'. – 2023. – T. 1, № 1. – S. 224-230. – DOIhttps://doi.org/10.33764/2618-981X-2023-1-1-224-230.
16. Dragova T. A., Buldakova I. A., Gorbachev M. M., Loznica S. Yu. Matematicheskie modeli prognozirovaniya pogody dlya aviacionnyh celey: ispol'zovanie metodov statistiki i chislennogo modelirovaniya dlya prognozirovaniya pogody i optimizacii bezopasnosti poletov // Nauchnyy aspekt. – 2024. – T. 6, № 4. – S. 730-742.
17. Tolstyh, M. A. Primenenie modeley prognoza pogody dlya modelirovaniya klimata // Fundamental'naya i prikladnaya klimatologiya. – 2023. – T. 9, № 3. – S. 318-329. – DOIhttps://doi.org/10.21513/2410-8758-2023-3-318-329.
18. Svidetel'stvo o gosudarstvennoy registracii programmy dlya EVM № 2024668093 Rossiyskaya Federaciya. «Programma dlya kadrirovaniya videoryada» : № 2024666554 : zayavl. 16.07.2024 : opubl. 01.08.2024 / A. V. Kalach, A. A. Paramonov, T. E. Smolenceva, K. A. Kuznecova ; zayavitel' federal'noe kazennoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Voronezhskiy institut Federal'noy sluzhby ispolneniya nakazaniy Rossii».
19. Kalach A. V., Paramonov A. A. Primenenie pochti-periodicheskogo analiza izobrazheniy dinamiki aktivnosti ciklonov v celyah vyrabotki upravlencheskih resheniy po povysheniyu ustoychivosti territoriy v chrezvychaynyh situaciyah // Teoriya i praktika povysheniya ustoychivosti urbanizirovannyh territoriy v chrezvychaynyh situaciyah : Sbornik materialov mezhdunarodnogo kruglogo stola (v ramkah provedeniya XV Mezhdunarodnogo salona sredstv obespecheniya bezopasnosti "Kompleksnaya bezopasnost'-2024"), Kongressno-vystavochnyy centr "Patriot", g. Kubinka, Moskovskaya obl., 30 maya 2024 goda. – Moskva: Vserossiyskiy nauchno-issledovatel'skiy institut po problemam grazhdanskoy oborony i chrezvychaynyh situaciy MChS Rossii, 2024. – S. 106-112.
20. National Oceanic and Atmospheric Administration [Elektronnyy resurs]. – URL: https://www.noaa.gov/ (data obrascheniya: 27.10.2024).