Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
The problem of landscaping is relevant in connection with innovations in the construction and reconstruction of buildings. The relevance of the environmental problem of the city of Voronezh is the condition of seedlings of tree and shrub species. Due to the fact that most trees in Voronezh were planted in the 1970-1980s, as well as due to the emergence of aggressive invasive species of insects and fungal diseases directed aggressively against certain types of tree species (ash borer (Agrilus planipennis Fairmaire), Dutch disease elm (the causative agent is the marsupial fungus (Ophiostoma ulmi, (Buisman) Melin & Nannf.), the city ecology department is pursuing a policy of active renewal of dendroflora. The quantitative and qualitative condition, species composition and growing conditions of seedlings were determined (Aesculus hippocastanum L., Catalpa bignonioides Walter, Prunus cerasifera 'Nigra' Aiton, Acer platanoides Globosum L., Populus nigra L., Tília cordáta Mill, Sorbus aucuparia L., Bétula péndula Roth, Quércus róbur L., Acer platanoides L., Acer tataricum subsp. ginnala (Maxim.) Wesm., Acer platanoides Drummondii L., Thuja occidentalis L., Syringa vulgaris L., Juniperus scopulorum Sarg.), planted in 2022 on the territory of the administrative districts of the city of Voronezh. During the study, standard methods of environmental research were used, followed by desk processing, as a result of which 1,487 seedlings of trees and shrubs were identified and examined in the urban district of Voronezh (495 seedlings of Tília cordáta Mill, 163 – Sorbus aucuparia L., 10 – Bétula péndula Roth, 4 – Quércus róbur Quércus róbur L., 334 – Acer platanoides L., 7 – Acer tataricum subsp. ginnala (Maxim.) Wesm., 5 – Acer platanoides Drummondii L., 9 – Thuja occidentalis L., 35 – Aesculus hippocastanum L., 35 – Catalpa bignonioides Walter, 3 – Prunus cerasifera 'Nigra' Aiton, 11 – Acer platanoides Globosum L., 135 – Prunus cerasifera 'Nigra' Aiton, as well as 230 seedlings of Syringa vulgaris L., and 11 seedlings of Juniperus scopulorum Sarg.). Best survival rate (100%) showed such species as pedunculate oak (Quércus róbur L.), Ginnala maple (Acer tataricum subsp. ginnala (Maxim.) Wesm.), western thuja (Thuja occidentalis L.), horse chestnut (Aesculus hippocastanum L.), Nigra plum (Prunus cerasifera 'Nigra' Aiton), Globosum maple (Acer platanoides Globosum L.), common lilac (Syringa vulgaris L.), pyramidal poplar (Populus nigra L.) and rock juniper (Juniperus scopulorum Sarg.). The worst survival rate was shown by catalpa bignonioides (Catalpa bignonioides Walter) - 71.4%. 100% of the planted plants took root only in the Zheleznodorozhny district of the city. The least number of plants (88%) took root in the Central region of Voronezh.
tree species, seedlings, Aesculus hippocastanum, Catalpa bignonioides, Prunus cerasifera 'Nigra', Acer platanoides Globosum, Populus nigra, Tília cordáta, Sorbus aucuparia, Bétula péndula, Quércus róbur, Acer platanoides, Acer ginnala, Acer platanoide s Drummondii, Thuja occidentalis, Syringa vulgaris, Juniperus scopulorum, green areas, parks and squares, air pollution, soil pollution, park.
1. Mamieva, E. B. Ocenka ustoychivosti fotosinteticheskogo apparata lipy melkolistnoy Tilia Sordata Mill. v gradiente tehnogennogo zagryazneniya g. Vladikavkaz / E. B. Mamieva, L. V. Shirnina, V. T. Popova // Lesotehnicheskiy zhurnal. 2022. 12. (2): 30–42. DOI: https://doi.org/10.34220/issn.2222-7962/2022.2/3. URL: https://www.elibrary.ru/nbzpau.
2. Popova, A. A. Sovremennaya genosistematika i biologicheskie osobennosti estestvenno rastuschih i introducirovannyh vidov roda Quercus / A. A. Popova, V. V. Molchanov, E. A. Rad'kova // Lesotehnicheskiy zhurnal. 2021. 11. (1): 5–23. DOI:https://doi.org/10.34220/issn.2222-7962/2021.1/1. URL: https://elibrary.ru/item.asp?id=44938459.
3. Novye mezhsekcionnye gibridy nastoyaschih topoley Eupopulus L. / A. P. Carev, R. P. Careva, V. A. Carev, E. A. Myakotnikova, R. V. Momot // Lesotehnicheskiy zhurnal. 2023. 13 (1): 5–22. DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/1. URL: https://elibrary.ru/item.asp?id=53814686.
4. Migunova, E. S. Lesnaya tipologiya i botanika. Ekologicheskaya ocenka faktorov prirodnoy sredy / E. S. Migunova // Lesnoy vestnik. Forestry Bulletin. 2020. 24 (4): 65-81. DOI: https://doi.org/10.18698/2542-1468-2020-4-65-81. URL: https://elibrary.ru/item.asp?id=43777372.
5. Belton S., Cubry P., Fox E., Kelleher C. T. Novel Post-Glacial Haplotype Evolution in Birch – A Case for Conserving Local Adaptation. Forests. 2021; 12,1246. DOI: https://doi.org/10.3390/f120912.
6. Popova, S. S. On the issue of the negative impact of urban environmental factors on the plant components of the ecosystem of botanical gardens (on the example of the botanical garden Named after B.M. Kozo- Polyansky, Voronezh state University, Voronezh C.) / S. S. Popova, N. L. Prokhorova // Practice Oriented Science: UAE - RUSSIA - INDIA : Proceedings of the International University Scientific Forum, UAE, 27 yanvarya 2023 goda. – UAE: Infiniti, 2023: 255-261. DOI: https://doi.org/10.34660/INF.2023.58.82.086.
7. Elise M. Willis, Andrew K. Koeser, Mysha Clarke et al. Greening development: Reducing urban tree canopy loss through incentives. Urban Forestry & Urban Greening. 2024; 91. DOI: https://doi.org/10.1016/j.ufug.2023.128184.
8. Tsarev A.P., Tsareva R.P., Tsarev V.A. Poplar testing and breeding in the Central Chernozem region of Russia. IOP Conf. Ser.: Earth Environ. Sci. 392. 2019. DOI: http://doi.orghttps://doi.org/10.1088/1755-1315/392/1/0122010.
9. Izuchenie vzaimosvyazi mezhdu parametrami rel'efa mestnosti i usloviyami proizrastaniya nasazhdeniy v Voronezhskoy oblasti / V. A. Slavskiy, D. A. Litovchenko, A. V. Mironenko, N. N. Harchenko, E. V. Titov, Z. Govedar // Lesotehnicheskiy zhurnal. 2023; 13 (1): 146-161. DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/10. URL: https://elibrary.ru/item.asp?id=53814695.
10. Anamthawat-Jónsson K. Hybrid introgression: the outcomes of gene flow in birch. Science Asia. 2019; 45: 203–211. DOI: http://doihttps://doi.org/10.2306/scienceasia1513-1874.
11. B. Thapa, L. Darling, D.H. Choi, C.M. Ardohain, A. Firoze, D.G. Aliaga, B.S. Hardiman, S. Fei. Application of multi-temporal satellite imagery for urban tree species identification. Urban Forestry & Urban Greening. 2024; 98. DOI: https://doi.org/10.1016/j.ufug.2024.128409.
12. Benno A. Augustinus, Meinrad Abegg, Valentin Queloz, Eckehard G. Brockerhoff. Higher tree species richness and diversity in urban areas than in forests: Implications for host availability for invasive tree pests and pathogens. Landscape and Urban Planning. 2024; 98. DOI: https://doi.org/10.1016/j.landurbplan.2024.105144.
13. Sharma U., Sankhyan H. P., Kumari A. et al. Genomic selection: a revolutionary approach for forest tree improvement in the wake of climate change. Euphytica 220. 2024; 9. DOI: https://doi.org/10.1007/s10681-023-03263-5.
14. Ivetić V. et al. The role of forest reproductive material quality in forest restoration // Forestry Engineering Journal. 2019: 9 (2): 56-65. DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/7.
15. Zijie Zhou, Junhong Fu, Yiqiang Xiao. Risk of wind destruction to urban trees: Prediction workflow and relative importance of influencing factors. Sustainable Cities and Society. 2024; 112. DOI: https://doi.org/10.1016/j.scs.2024.105600.
16. Yasong Guo, Wendy Y. Chen. Monitoring tree canopy dynamics across heterogeneous urban habitats: A longitudinal study using multi-source remote sensing data. Journal of Environmental Management. 2024; 356. DOI: https://doi.org/10.1016/j.jenvman.2024.120542.
17. Peter Edwards, Robyn Simcock, Eleanor Absalom, Gradon Diprose. Human impacts on the wellbeing of urban trees in Wellington, New Zealand. Societal Impacts. 2024; 3. DOI: https://doi.org/10.1016/j.socimp.2024.100045.
18. Andy J. Moffat, Bianca Ambrose-Oji, Toni-Kim Clarke, Liz O’Brien, Kieron J. Doick. Public attitudes to urban trees in Great Britain in the early 2020s. Urban Forestry & Urban Greening. 2024; 91. DOI: https://doi.org/10.1016/j.ufug.2023.128177.
19. Rita Sousa-Silva, Tristan Lambry, Elyssa Cameron, Michaël Belluau, Alain Paquette. Urban forests – Different ownership translates to greater diversity of trees. Urban Forestry & Urban Greening, 2023; 88. DOI: https://doi.org/10.1016/j.ufug.2023.128084.
20. Kinya Shiraishi, Toru Terada. Tokyo’s urban tree challenge: Decline in tree canopy cover in Tokyo from 2013 to 2022. Urban Forestry & Urban Greening. 2024; 97. DOI: https://doi.org/10.1016/j.ufug.2024.128331.
21. Alice Maison, Lya Lugon, Soo-Jin Park et al. Contrasting effects of urban trees on air quality: From the aerodynamic effects in streets to impacts of biogenic emissions in cities. Science of The Total Environment. 2024; 946. DOI: https://doi.org/10.1016/j.scitotenv.2024.174116.
22. Edward Russel Hernandez, Patricia Breanne Sy, Michelle T. Cirunay, Rene C. Batac. Power-law distributions of urban tree cover. Physica A: Statistical Mechanics and its Applications. 2024; 643. DOI: https://doi.org/10.1016/j.physa.2024.129779.
23. Yixuan Yang, Yan Xu, Yusen Duan et al. How can trees protect us from air pollution and urban heat? Associations and pathways at the neighborhood scale. Landscape and Urban Planning. 2023; 236. DOI: https://doi.org/10.1016/j.landurbplan.2023.104779.
24. Xinyu Sun, Yijun Qiu, Huijun Qi, et al. Improving the ecological benefits evaluation on urban street trees: Development of a living vegetation volume quantifying framework with multi-source data. Ecological Indicators. 2024; 158. DOI: https://doi.org/10.1016/j.ecolind.2023.111367.
25. Manuel Esperon-Rodriguez, Desi Quintans, Paul D. Rymer. Urban tree inventories as a tool to assess tree growth and failure: The case for Australian cities. Landscape and Urban Planning. 2023; 233. DOI: https://doi.org/10.1016/j.landurbplan.2023.104705.