Voronezh, Voronezh, Russian Federation
Voronezh, Russian Federation
Voronezh, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
The issue of environmental friendliness of plywood remains relevant in the modern woodworking industry. Nanomodification of wood slab materials is one of the promising methods for solving this problem. Optical, chemical and IR spectroscopic methods were used to investigate and substantiate the presence of characteristic features of the nanocomposite in the resulting composite material of plywood based on birch veneer (Betula pendula Roth) and carbamide-formaldehyde resin modified with nanocrystalline cellulose. The advantage of a urea–formaldehyde binder in comparison with a phenol-formaldehyde binder for the production of plywood nanocomposite has been proven when activating a nanomodified binder by ultrasound and plywood in a pulsed magnetic field. The influence of the components of the complex binder on the morphology of the surface of the cured adhesive and the manufactured composite plywood has been established: homogenization of the binder, improvement of the quality of the adhesive seam and adhesion processes. The environmental friendliness of the nanocomposite was assessed by the formaldehyde content in the binder and plywood. The effect of crystalline nanocellulose on improving the environmental characteristics of the formaldehyde binder was confirmed: a decrease in the formaldehyde content in the urea–formaldehyde binder by 42.3% (from 0.882% to 0.509%), p<0.05; in the phenol-formaldehyde binder - by 11.9% (from 0.084% to 0.074%), p<0.05. The formaldehyde emission class of plywood on a carbamide-formaldehyde binder modified with nanocrystalline cellulose decreases from E2 to E1 (from 13.82 to 7.70 mg/100 g abs. dry plywood), p<0.05, and plywood obtained on a phenol-formaldehyde binder with nanocellulose remains unchanged – equal to E2 (from 15.58 to 8.35 mg/ 100 g abs. dry plywood), p<0.05. The production of the resulting nanocomposite eco-plywood should significantly expand the use of plywood as a structural material.
nanocrystalline cellulose, nanocomposite plywood, pulsed magnetic field, veneer, ultrasonic field, modification
1. Fayomi O.S.I, Okwilagwe O., O. Agboola O., Oyedepo S.O, Popoola A.P.I. Assessment of composite materials in advance application: A mini overview. Materials Today: Proceedings. 2021; 38 (5): 2402-2405. ISSN 2214-7853. DOI: https://doi.org/10.1016/j.matpr.2020.07.344.
2. Saberi A., Bakhsheshi-Rad H.R., Karamian E. et al. Synthesis and Characterization of Hot Extruded Magnesium-Zinc Nano-Composites Containing Low Content of Graphene Oxide for Implant Applications. Phys Mesomech. 2021; 24: 486–502. DOI: https://doi.org/10.1134/S1029959921040135.
3. Zhao J., Haowei M., Saberi A., Heydari Z., Baltatu, M.S. Carbon Nanotube (CNT) Encapsulated Magnesium-Based Nanocomposites to Improve Mechanical, Degradation and Antibacterial Performances for Biomedical Device Applications. Coatings. 2022; 12: 1589. DOI: https://doi.org/10.3390/coatings12101589.
4. Lishnih M. A. Vidy i svoystva nanokompozitov na osnove polimernyh materialov. Vestnik nauki. 2022; 6(51): 363-367. Rezhim dostupa: https://elibrary.ru/item.asp?id=48615669.
5. Ali Dorieh, Peyman Pouresmaeel Selakjani, Mohammad Hassan Shahavi, Antonio Pizzi, Sogand Ghafari Movahed, Mohammad Farajollah Pour, Roozbeh Aghaei. Recent developments in the performance of micro/nanoparticle-modified urea-formaldehyde resins used as wood-based composite binders: A review. International Journal of Adhesion and Adhesives. 2022; 114: 103106. ISSN 0143-7496. DOI: https://doi.org/10.1016/j.ijadhadh.2022.103106.
6. Sotayo A., Bradley D., Bather M., Sareh P., Oudjene M., El-Houjeyri I., Harte A.M., Mehra S., O’Ceallaigh C., Haller P., Namari S., Makradi A., Belouettar S., Bouhala L., Deneufbourg F., Guan Z. Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Dev Built Environ. 2020; 1: 100004. ISSN 0144-8617. DOI: https://doi.org/10.1016/j.dibe.2019.100004.
7. Tianxiang Wang, Yue Wang, Roberto Crocetti, Magnus Wålinder. In-plane mechanical properties of birch plywood. Construction and Building Materials. 2022; 340: 127852. ISSN 0950-0618. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127852.
8. Niftaliev, R. M. Vidy drevesnyh plit i ih primenenie. Agroprodovol'stvennaya politika Rossii. 2020; 4: 40-45. Rezhim dostupa: https://elibrary.ru/item.asp?id=44220047.
9. Pavlo Bekhta, Emilia-Adela Salca, Aurel Lunguleasa. Some properties of plywood panels manufactured from combinations of thermally densified and non-densified veneers of different thicknesses in one structure. Journal of Building Engineering. 2020; 29: 101116. ISSN 2352-7102. DOI: https://doi.org/10.1016/j.jobe.2019.101116.
10. Shishakina O. A. Polimernye kompozicionnye materialy v stroitel'stve. Mezhdunarodnyy zhurnal prikladnyh i fundamental'nyh issledovaniy. 2019; 12-2: 234-238. Rezhim dostupa: https://elibrary.ru/item.asp?id=42364000.
11. Antov P., Lee S., Lubis M.A.R., Yadav S.M. Potential of Nanomaterials in Bio-Based Wood Adhesives: An Overview. In: Taghiyari, H.R., Morrell, J.J., Husen, A. (eds) Emerging Nanomaterials. Springer, Cham. 2023; 25-63. DOI: https://doi.org/10.1007/978-3-031-17378-3_2.
12. Hossein Khanjanzadeh, Rabi Behrooz, Nader Bahramifar, Stefan Pinkl, Wolfgang Gindl-Altmutter. Application of surface chemical functionalized cellulose nanocrystals to improve the performance of UF adhesives used in wood based composites - MDF type. Carbohydrate Polymers. 2019; 206: 11-20. ISSN 0144-8617. DOI: https://doi.org/10.1016/j.carbpol.2018.10.115.
13. Kristak L., Antov P., Bekhta P., Lubis M. A. R., Iswanto, A. H. Reh R., Hejna A. Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: a review. Wood Material Science & Engineering. 2022; 18(2): 763–782. DOI: https://doi.org/10.1080/17480272.2022.2056080.
14. Indrayudh Mondal, Megan Groves, Erin M. Driver, Wendy Vittori, Rolf U. Halden. Carcinogenic formaldehyde in U.S. residential buildings: Mass inventories, human health impacts, and associated healthcare costs. Science of The Total Environment. 2024; 944: 173640. DOI: https://doi.org/10.1016/j.scitotenv.2024.173640.
15. Yaoxing Chen, Yongjing Rao, Peng Liu, Linlin Wu, Guojie Zhang, Jianguo Zhang, Fengwei Xie. High-amylose starch-based gel as green adhesive for plywood: Adhesive property, water-resistance, and flame-retardancy. Carbohydrate Polymers 2024; 339: 122247. ISSN 0144-8617. DOI: https://doi.org/10.1016/j.carbpol.2024.122247.
16. Antov P., Savov V., Neykov N. Sustainable bio-based adhesives for eco-friendly wood composites. A revie. Wood Res. 2020; 65(1): 51-62. DOI: https://doi.org/10.37763/wr.1336-4561/65.1.051062.
17. Pasko Y.V., Machneva O.P. Properties of Wood-Fiber Board Manufactured with the Use of UFC-FF Modified Urea–Formaldehyde Resin. Polym. Sci. Ser. D. 2023; 16: 758–761. DOI: https://doi.org/10.1134/S1995421223030243.
18. Xu G., Liang J., Zhang B. et al. Performance and structures of urea-formaldehyde resins prepared with different formaldehyde solutions. Wood Sci Technol. 2021; 55: 1419–1437. DOI: https://doi.org/10.1007/s00226-021-01280-y.
19. Yang H., Wang H., Du G., Ni K., Wu Y., Su H., Water Gao, Tan X., Yang Z., Yang L., Ran X.. Ureido hyperbranched polymer modified urea-formaldehyde resin as high-performance particleboard adhesive. Materials. 2023; 16(11): 4021. DOI: https://doi.org/10.3390/ma16114021.
20. Danilowska A., Kowaluk G. The use of coffee bean post-extraction residues as a filler in plywood technology. Ann WULS–SGGW for and Wood Technol. 2020; 109: 24–31. DOI: https://doi.org/10.5604/01.3001.0014.3091.
21. Jinxia Li, Fantao Ren, Xuan Liu, Guihua Chen, Xingong Li, Yan Qing, Yiqiang Wu, Ming Liu. Eco-friendly fiberboards with low formaldehyde content and enhanced mechanical properties produced with activated soybean protein isolate modified urea-formaldehyde resin. European Polymer Journal. 2024; 210: 113002. ISSN 0014-3057. DOI: https://doi.org/10.1016/j.eurpolymj.2024.113002.
22. Bayani S., Taghiyari H.R., Papadopoulos A.N. Physical and Mechanical Properties of Thermally-Modified Beech Wood Impregnated with Silver Nano-Suspension and Their Relationship with the Crystallinity of Cellulose. Polymers. 2019; 11: 1538. DOI: https://doi.org/10.3390/polym11101538.
23. Lirya Silva L. C. et al. Heat Transfer and Physical-Mechanical Properties Analysis of Particleboard Produced with ZnO Nanoparticles Addition. BioResources. 2019; 14 (4): 9904-9915. ISSN: 1930-2126. DOI: https://doi.org/10.15376/biores.14.4.9904-9915.
24. Gul W., Shah S.R.A., Khan A., Pruncu, C.I. Characterization of Zinc Oxide-Urea Formaldehyde Nano Resin and Its Impact on the Physical Performance of Medium-Density Fiberboard. Polymers. 2021; 13: 371. DOI: https://doi.org/10.3390/polym13030371.
25. Radosław Auriga, Aneta Gumowska, Karol Szymanowski, Anita Wronka, Eduardo Robles, Przemysław Ocipka, Grzegorz Kowaluk. Performance properties of plywood composites reinforced with carbon fibers. Composite Structures. 2020; 248: 112533. ISSN 0263-8223. DOI: https://doi.org/10.1016/j.compstruct.2020.112533.
26. Pour M. F., Mehdinia M., Kiamahalleh M. V., Hoseini K. D., Hatefnia H., & Dorieh A. Biological durability of particleboard: fungicidal properties of Ag and Cu nanoparticles against Trametes versicolor white-rot fungus. Wood Material Science & Engineering. 2021; 17(6): 929–936. DOI: https://doi.org/10.1080/17480272.2021.1977996.
27. Jovanović V., Samaržija-Jovanović S., Petković B.B. et al. Nano-silica-based urea–formaldehyde composite with some derivates of coumarin as formaldehyde scavenger: hydrolytical and thermal stability. Polym. Bull. 2021; 78: 399–413. DOI: https://doi.org/10.1007/s00289-020-03114-6.
28. Pedro Henrique Gonzalez de Cademartori, Mirela Angelita Artner, Rilton Alves de Freitas, Washington Luiz Esteves Magalhães. Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: Rheological and in-situ cure performance. Composites Part B: Engineering. 2019; 176: 107281. ISSN 1359-8368. DOI: https://doi.org/10.1016/j.compositesb.2019.107281.
29. Lubis M. A. R., Park B. D. Enhancing the performance of low molar ratio urea–formaldehyde resin adhesives via in-situ modification with intercalated nanoclay. The Journal of Adhesion. 2020; 97(14): 1271–1290. DOI: https://doi.org/10.1080/00218464.2020.1753515.
30. Salthammer T. Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. // Build Environ. 2019; 150: 219-232. DOI: https://doi.org/10.1016/j.dib.2018.11.096.
31. Yuschenko E.V. Magnitoobrabotannyy kompozicionnyy material dlya proizvodstva fanery na osnove uplotnennogo shpona osiny (Populus tremula L.) i kompleksnogo svyazuyuschego s nanokristallicheskoy cellyulozoy. Lesotehnicheskiy zhurnal. 2024; 14 (1): 219–237. Rezhim dostupa: https://elibrary.ru/item.asp?id=67863743.
32. Aleksandr Evhenovych Kolosov, Elena Petryvna Kolosova, Volodymyr Volodymyrovych Vanin, Anish Khan. 25 - Ultrasonic treatment in the production of classical composites and carbon nanocomposites. Editor(s): Anish Khan, Mohammad Jawaid, Inamuddin, Abdullah Mohamed Asiri. In Woodhead Publishing Series in Composites Science and Engineering. Nanocarbon and its Composites. Woodhead Publishing. 2019; 733-780. ISBN 9780081025093 DOI: https://doi.org/10.1016/B978-0-08-102509-3.00025-0.
33. Zhu J.Y., Agarwal U.P., Ciesielski P.N. et al. Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments. Biotechnol Biofuels. 2021; 14: 114. DOI: https://doi.org/10.1186/s13068-021-01963-5.
34. Savov V. Nanomaterials to Improve Properties in Wood-Based Composite Panels. In: Taghiyari, H.R., Morrell, J.J., Husen, A. (eds) Emerging Nanomaterials. Springer, Cham. 2023; 135-153. DOI: https://doi.org/10.1007/978-3-031-17378-3_5.
35. Chen C, Berglund L, Burgerd B, Hu L. Wood nanomaterials and nanotechnologies. Adv Mater. 2021; 33(28): 2006207. DOI:https://doi.org/10.1002/adma.202006207.
36. Amin Moslemi, Mohsen Zolfagharlou koohi, Tayebeh Behzad, Antonio Pizzi Addition of cellulose nanofibers extracted from rice straw to urea formaldehyde resin; effect on the adhesive characteristics and medium density fiberboard properties // International Journal of Adhesion and Adhesives. 2020; 99: 102582. ISSN 0143-7496. DOI: https://doi.org/10.1016/j.ijadhadh.2020.102582.